Multifractal Random Walks as Fractional Wiener Integrals

Multifractal random walks are defined as integrals of infinitely divisible stationary multifractal cascades with respect to fractional Brownian motion. Their key properties are studied, such as finiteness of moments and scaling, with respect to the chosen values of the self-similarity and infinite divisibility parameters. The range of these parameters is larger than that considered previously in the literature, and the cases of both exact and nonexact scale invariance are considered. Special attention is paid to various types of definitions of multifractal random walks. The resulting random walks are of interest in modeling multifractal processes whose marginals exhibit stationarity and symmetry.

[1]  J. Kahane,et al.  Sur certaines martingales de Benoit Mandelbrot , 1976 .

[2]  D. Schertzer,et al.  Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes , 1987 .

[3]  R. Adler An introduction to continuity, extrema, and related topics for general Gaussian processes , 1990 .

[4]  S. Kwapień,et al.  Random Series and Stochastic Integrals: Single and Multiple , 1992 .

[5]  G. Samorodnitsky Random series and stochastic integrals:single and multiple , 1994 .

[6]  G. Gripenberg,et al.  On the prediction of fractional Brownian motion , 1996, Journal of Applied Probability.

[7]  A. S. ÜstünelÉcole Stochastic Analysis of the Fractional Brownian Motion , 1996 .

[8]  竹中 茂夫 G.Samorodnitsky,M.S.Taqqu:Stable non-Gaussian Random Processes--Stochastic Models with Infinite Variance , 1996 .

[9]  B. Mandelbrot A Multifractal Walk down Wall Street , 1999 .

[10]  M. Taqqu,et al.  Integration questions related to fractional Brownian motion , 2000 .

[11]  F. Schmitt,et al.  Stochastic equations generating continuous multiplicative cascades , 2001, cond-mat/0102346.

[12]  B. Mandelbrot,et al.  Multifractal products of cylindrical pulses , 2002 .

[13]  E. Bacry,et al.  Multifractal random walk. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  E. Bacry,et al.  Multifractal stationary random measures and multifractal random walks with log infinitely divisible scaling laws. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  R. Riedi,et al.  Multifractal products of stochastic processes: construction and some basic properties , 2002, Advances in Applied Probability.

[16]  E. Bacry,et al.  Log-Infinitely Divisible Multifractal Processes , 2002, cond-mat/0207094.

[17]  D. Nualart,et al.  Stochastic integration with respect to the fractional Brownian motion , 2003 .

[18]  Murad S. Taqqu,et al.  Theory and applications of long-range dependence , 2003 .

[19]  A. Philippe,et al.  Generators of long-range dependent processes: A survey , 2003 .

[20]  F. Schmitt A causal multifractal stochastic equation and its statistical properties , 2003, cond-mat/0305655.

[21]  M. Lapidus,et al.  Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot , 2004 .

[22]  B. Mandelbrot Intermittent turbulence in self-similar cascades : divergence of high moments and dimension of the carrier , 2004 .

[23]  Patrice Abry,et al.  New Insights into the Estimation of Scaling Exponents , 2004, Int. J. Wavelets Multiresolution Inf. Process..

[24]  S. Jaffard Wavelet Techniques in Multifractal Analysis , 2004 .

[25]  Patrice Abry,et al.  On non-scale-invariant infinitely divisible cascades , 2005, IEEE Transactions on Information Theory.

[26]  P. Abry,et al.  Warped infinitely divisible cascades: beyond power laws , 2005 .

[27]  S. Jaffard,et al.  Wavelet Leaders in Multifractal Analysis , 2006 .

[28]  C. Ludena,et al.  Lp-variations for multifractal fractional random walks. , 2008, 0806.2731.

[29]  Carenne Lude L P -VARIATIONS FOR MULTIFRACTAL FRACTIONAL RANDOM WALKS , 2008 .

[30]  Joachim Yaakov Nahmani Stochastic Integration with Respect to Fractional Brownian Motion , 2009 .

[31]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .