The coordinated action of the MVB pathway and autophagy ensures cell survival during starvation

The degradation and recycling of cellular components is essential for cell growth and survival. Here we show how selective and non-selective lysosomal protein degradation pathways cooperate to ensure cell survival upon nutrient limitation. A quantitative analysis of starvation-induced proteome remodeling in yeast reveals comprehensive changes already in the first three hours. In this period, many different integral plasma membrane proteins undergo endocytosis and degradation in vacuoles via the multivesicular body (MVB) pathway. Their degradation becomes essential to maintain critical amino acids levels that uphold protein synthesis early during starvation. This promotes cellular adaptation, including the de novo synthesis of vacuolar hydrolases to boost the vacuolar catabolic activity. This order of events primes vacuoles for the efficient degradation of bulk cytoplasm via autophagy. Hence, a catabolic cascade including the coordinated action of the MVB pathway and autophagy is essential to enter quiescence to survive extended periods of nutrient limitation. DOI: http://dx.doi.org/10.7554/eLife.07736.001

[1]  M. Zhang,et al.  The Endosomal Protein CHARGED MULTIVESICULAR BODY PROTEIN1 Regulates the Autophagic Turnover of Plastids in Arabidopsis , 2015, Plant Cell.

[2]  Gregory A. Wyant,et al.  Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1 , 2015, Science.

[3]  G. Superti-Furga,et al.  SLC38A9 is a component of the lysosomal amino acid-sensing machinery that controls mTORC1 , 2014, Nature.

[4]  D. Klionsky,et al.  Autophagy is required for G1/G0 quiescence in response to nitrogen starvation in Saccharomyces cerevisiae , 2014, Autophagy.

[5]  B. André,et al.  Stress Conditions Promote Yeast Gap1 Permease Ubiquitylation and Down-regulation via the Arrestin-like Bul and Aly Proteins* , 2014, The Journal of Biological Chemistry.

[6]  Laura R. Ganser,et al.  Glucose Starvation Inhibits Autophagy via Vacuolar Hydrolysis and Induces Plasma Membrane Internalization by Down-regulating Recycling* , 2014, The Journal of Biological Chemistry.

[7]  C. Joazeiro,et al.  Jcb: Report , 2022 .

[8]  Ruedi Aebersold,et al.  Early Steps in Autophagy Depend on Direct Phosphorylation of Atg9 by the Atg1 Kinase , 2014, Molecular cell.

[9]  N. Mizushima,et al.  At the end of the autophagic road: an emerging understanding of lysosomal functions in autophagy. , 2014, Trends in biochemical sciences.

[10]  A. Marini,et al.  The TORC1 effector kinase Npr1 fine tunes the inherent activity of the Mep2 ammonium transport protein , 2014, Nature Communications.

[11]  B. Sarg,et al.  Comparing and Combining Capillary Electrophoresis Electrospray Ionization Mass Spectrometry and Nano–Liquid Chromatography Electrospray Ionization Mass Spectrometry for the Characterization of Post-translationally Modified Histones , 2013, Molecular & Cellular Proteomics.

[12]  A. Matsuura,et al.  The Role of Autophagy in Genome Stability through Suppression of Abnormal Mitosis under Starvation , 2013, PLoS genetics.

[13]  A. Bertolotti,et al.  Failure of Amino Acid Homeostasis Causes Cell Death following Proteasome Inhibition , 2012, Molecular cell.

[14]  D. Rubinsztein,et al.  Autophagy modulation as a potential therapeutic target for diverse diseases , 2012, Nature Reviews Drug Discovery.

[15]  U. Sauer,et al.  A prototrophic deletion mutant collection for yeast metabolomics and systems biology , 2012, Nature Biotechnology.

[16]  C. Kraft,et al.  Mechanisms and regulation of autophagosome formation. , 2012, Current opinion in cell biology.

[17]  M. Curtiss,et al.  Regulation of Membrane Protein Degradation by Starvation‐Response Pathways , 2012, Traffic.

[18]  A. Alberti,et al.  Induction of autophagy in ESCRT mutants is an adaptive response for cell survival in C. elegans , 2012, Journal of Cell Science.

[19]  M. Hall,et al.  Target of Rapamycin (TOR) in Nutrient Signaling and Growth Control , 2011, Genetics.

[20]  S. Emr,et al.  TORC1 Regulates Endocytosis via Npr1-Mediated Phosphoinhibition of a Ubiquitin Ligase Adaptor , 2011, Cell.

[21]  Roberto Zoncu,et al.  mTORC1 Senses Lysosomal Amino Acids Through an Inside-Out Mechanism That Requires the Vacuolar H+-ATPase , 2011, Science.

[22]  N. Mizushima,et al.  The role of Atg proteins in autophagosome formation. , 2011, Annual review of cell and developmental biology.

[23]  B. Sarg,et al.  Optimization and evaluation of a sheathless capillary electrophoresis-electrospray ionization mass spectrometry platform for peptide analysis: comparison to liquid chromatography-electrospray ionization mass spectrometry. , 2011, Analytical chemistry.

[24]  Andrea Ballabio,et al.  TFEB Links Autophagy to Lysosomal Biogenesis , 2011, Science.

[25]  L. Santambrogio,et al.  Microautophagy of cytosolic proteins by late endosomes. , 2011, Developmental cell.

[26]  D. Sabatini,et al.  mTOR: from growth signal integration to cancer, diabetes and ageing , 2010, Nature Reviews Molecular Cell Biology.

[27]  D. Metcalf,et al.  The role of ESCRT proteins in fusion events involving lysosomes, endosomes and autophagosomes. , 2010, Biochemical Society transactions.

[28]  B. Wendland,et al.  Quantitative Analysis of Endocytosis with Cytoplasmic pHluorin Chimeras , 2010, Traffic.

[29]  Daniel J Klionsky,et al.  Mammalian autophagy: core molecular machinery and signaling regulation. , 2010, Current opinion in cell biology.

[30]  D. Sabatini,et al.  Ragulator-Rag Complex Targets mTORC1 to the Lysosomal Surface and Is Necessary for Its Activation by Amino Acids , 2010, Cell.

[31]  N. Oshiro,et al.  Tor Directly Controls the Atg1 Kinase Complex To Regulate Autophagy , 2009, Molecular and Cellular Biology.

[32]  Valerio Embrione,et al.  A Gene Network Regulating Lysosomal Biogenesis and Function , 2009, Science.

[33]  Jin-A Lee,et al.  Inhibition of Autophagy Induction Delays Neuronal Cell Loss Caused by Dysfunctional ESCRT-III in Frontotemporal Dementia , 2009, The Journal of Neuroscience.

[34]  D. Klionsky,et al.  The quantitative Pho8Delta60 assay of nonspecific autophagy. , 2008, Methods in enzymology.

[35]  Jeffrey L. Brodsky,et al.  One step at a time: endoplasmic reticulum-associated degradation , 2008, Nature Reviews Molecular Cell Biology.

[36]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[37]  M. Mann,et al.  Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast , 2008, Nature.

[38]  D. Klionsky,et al.  Atg8 controls phagophore expansion during autophagosome formation. , 2008, Molecular biology of the cell.

[39]  R. Haguenauer‐Tsapis,et al.  Ear1p and Ssh4p are new adaptors of the ubiquitin ligase Rsp5p for cargo ubiquitylation and sorting at multivesicular bodies. , 2008, Molecular biology of the cell.

[40]  M. Sohrmann,et al.  Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease , 2008, Nature Cell Biology.

[41]  A. Isaacs,et al.  Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease , 2007, The Journal of cell biology.

[42]  F. Wendler,et al.  ESCRTs and Fab1 Regulate Distinct Steps of Autophagy , 2007, Current Biology.

[43]  M. Gerstein,et al.  Diverse Cellular Functions of the Hsp90 Molecular Chaperone Uncovered Using Systems Approaches , 2007, Cell.

[44]  S. Young,et al.  ESCRT-III Dysfunction Causes Autophagosome Accumulation and Neurodegeneration , 2007, Current Biology.

[45]  Robbie Loewith,et al.  Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. , 2007, Molecular cell.

[46]  D. Klionsky,et al.  Atg22 recycles amino acids to link the degradative and recycling functions of autophagy. , 2006, Molecular biology of the cell.

[47]  Dominique Thomas,et al.  Substrate‐mediated remodeling of methionine transport by multiple ubiquitin‐dependent mechanisms in yeast cells , 2006, The EMBO journal.

[48]  Linsheng Song,et al.  A soluble form of phosphatase in Saccharomyces cerevisiae capable of converting farnesyl diphosphate into E,E-farnesol , 2006, Applied biochemistry and biotechnology.

[49]  R. Vabulas,et al.  Protein Synthesis upon Acute Nutrient Restriction Relies on Proteasome Function , 2005, Science.

[50]  Jun Onodera,et al.  Autophagy Is Required for Maintenance of Amino Acid Levels and Protein Synthesis under Nitrogen Starvation* , 2005, Journal of Biological Chemistry.

[51]  E. Cameroni,et al.  The TOR and EGO protein complexes orchestrate microautophagy in yeast. , 2005, Molecular cell.

[52]  Masaaki Komatsu,et al.  Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice , 2005, The Journal of cell biology.

[53]  Daniel J Klionsky,et al.  Early stages of the secretory pathway, but not endosomes, are required for Cvt vesicle and autophagosome assembly in Saccharomyces cerevisiae. , 2004, Molecular biology of the cell.

[54]  Kara Dolinski,et al.  Saccharomyces genome database: Underlying principles and organisation , 2004, Briefings Bioinform..

[55]  E. O’Shea,et al.  Global analysis of protein expression in yeast , 2003, Nature.

[56]  A. Yamamoto,et al.  SKD1 AAA ATPase-dependent endosomal transport is involved in autolysosome formation. , 2002, Cell structure and function.

[57]  E. Eskelinen,et al.  Aut5/Cvt17p, a Putative Lipase Essential for Disintegration of Autophagic Bodies inside the Vacuole , 2001, Journal of bacteriology.

[58]  D. Klionsky,et al.  Degradation of Lipid Vesicles in the Yeast Vacuole Requires Function of Cvt17, a Putative Lipase* , 2001, The Journal of Biological Chemistry.

[59]  D. Botstein,et al.  Genomic expression programs in the response of yeast cells to environmental changes. , 2000, Molecular biology of the cell.

[60]  D. Klionsky,et al.  Dissection of Autophagosome Biogenesis into Distinct Nucleation and Expansion Steps , 2000, The Journal of cell biology.

[61]  Kazuya Nagano,et al.  Tor-Mediated Induction of Autophagy via an Apg1 Protein Kinase Complex , 2000, The Journal of cell biology.

[62]  V. Kushnirov Rapid and reliable protein extraction from yeast , 2000, Yeast.

[63]  J. Warner,et al.  The economics of ribosome biosynthesis in yeast. , 1999, Trends in biochemical sciences.

[64]  Takeshi Noda,et al.  Formation Process of Autophagosome Is Traced with Apg8/Aut7p in Yeast , 1999, The Journal of cell biology.

[65]  A. Schmidt,et al.  Starvation Induces Vacuolar Targeting and Degradation of the Tryptophan Permease in Yeast , 1999, The Journal of cell biology.

[66]  A. Schmidt,et al.  The TOR nutrient signalling pathway phosphorylates NPR1 and inhibits turnover of the tryptophan permease , 1998, The EMBO journal.

[67]  S. Emr,et al.  The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function , 1998, The EMBO journal.

[68]  D. Klionsky,et al.  Two Distinct Pathways for Targeting Proteins from the Cytoplasm to the Vacuole/Lysosome , 1997, The Journal of cell biology.

[69]  Scott D Emr,et al.  The AP-3 Adaptor Complex Is Essential for Cargo-Selective Transport to the Yeast Vacuole , 1997, Cell.

[70]  T. Noda,et al.  Novel system for monitoring autophagy in the yeast Saccharomyces cerevisiae. , 1995, Biochemical and biophysical research communications.

[71]  S. Emr,et al.  A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast , 1995, The Journal of cell biology.

[72]  S. Emr,et al.  VPS21 encodes a rab5‐like GTP binding protein that is required for the sorting of yeast vacuolar proteins. , 1994, The EMBO journal.

[73]  D. Klionsky,et al.  Aminopeptidase I of Saccharomyces cerevisiae is localized to the vacuole independent of the secretory pathway , 1992, The Journal of cell biology.

[74]  S. Tsuboi,et al.  Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction , 1992, The Journal of cell biology.

[75]  F. Altmann Determination of amino sugars and amino acids in glycoconjugates using precolumn derivatization with o-phthalaldehyde. , 1992, Analytical biochemistry.

[76]  A. Varshavsky,et al.  Ubiquitin as a degradation signal. , 1992, The EMBO journal.

[77]  S. Emr,et al.  Intracellular sorting and processing of a yeast vacuolar hydrolase: proteinase A propeptide contains vacuolar targeting information , 1988, Molecular and cellular biology.

[78]  T. Stevens,et al.  Protein sorting in yeast: Mutants defective in vacuole biogenesis mislocalize vacuolar proteins into the late secretory pathway , 1986, Cell.

[79]  S. Emr,et al.  Isolation of yeast mutants defective in protein targeting to the vacuole. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[80]  E. W. Jones Proteinase mutants of Saccharomyces cerevisiae. , 1977, Genetics.

[81]  D. Klionsky Monitoring autophagy in yeast: the Pho8Delta60 assay. , 2007, Methods in molecular biology.

[82]  Per Eivind Evidence for acidity of prelysosomal autophagic / endocytic vacuoles ( amphisomes ) , 2005 .

[83]  Kimberly Van Auken,et al.  WormBase: a multi-species resource for nematode biology and genomics , 2004, Nucleic Acids Res..

[84]  B Marshall,et al.  Gene Ontology Consortium: The Gene Ontology (GO) database and informatics resource , 2004, Nucleic Acids Res..

[85]  C. Ball,et al.  Saccharomyces Genome Database. , 2002, Methods in enzymology.

[86]  A. Kemper,et al.  Optimization and Evaluation of , 2000 .

[87]  P. Seglen,et al.  Hepatocytic autophagy. , 1991, Biomedica biochimica acta.

[88]  J. R.,et al.  Quantitative analysis , 1892, Nature.