Tracking Extrema in Dynamic Environments with Quantum-behaved Particle Swarm Optimization

This paper present a global searching performance algorithm-- Quantum-behaved Particle Swarm Optimization (QPSO) algorithm applied to the complex dynamic environment. A number of experiments are performed to test the performance of the QPSO. The environments used in the experiments are generated by Dynamic Function # 1(DF1). The results of the experiments indicate that QPSO is more adaptive than Particle Swarm Optimizer (PSO) in dynamic environment.

[1]  Frans van den Bergh,et al.  An analysis of particle swarm optimizers , 2002 .

[2]  Russell C. Eberhart,et al.  Tracking and optimizing dynamic systems with particle swarms , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[3]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[4]  Peter J. Angeline,et al.  Tracking Extrema in Dynamic Environments , 1997, Evolutionary Programming.

[5]  A. Carlisle,et al.  Tracking changing extrema with adaptive particle swarm optimizer , 2002, Proceedings of the 5th Biannual World Automation Congress.

[6]  Wenbo Xu,et al.  Particle swarm optimization with particles having quantum behavior , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[7]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[8]  Tan Ying An improved particle swarm optimizer in dynamic environments , 2008 .

[9]  Russell C. Eberhart,et al.  Adaptive particle swarm optimization: detection and response to dynamic systems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[10]  R.W. Morrison,et al.  A test problem generator for non-stationary environments , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[11]  Xiaodong Li,et al.  Comparing particle swarms for tracking extrema in dynamic environments , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[12]  Shan Shi Improved Adaptive Particle Swarm Optimizer in Dynamic Environment , 2006 .

[13]  Gerry Dozier,et al.  Adapting Particle Swarm Optimizationto Dynamic Environments , 2001 .

[14]  Jun Sun,et al.  A global search strategy of quantum-behaved particle swarm optimization , 2004, IEEE Conference on Cybernetics and Intelligent Systems, 2004..