A new framework for dynamical models on multiplex networks

Many complex systems have natural representations as multi-layer networks. While these formulations retain more information than standard single-layer network models, there is not yet a fully developed theory for computing network metrics and statistics on these objects. We introduce a family of models of multiplex processes motivated by dynamical applications and investigate the properties of their spectra both theoretically and computationally. We study special cases of multiplex diffusion and Markov dynamics, using the spectral results to compute their rates of convergence. We use our framework to define a version of multiplex eigenvector centrality, which generalizes some existing notions in the literature. Last, we compare our operator to structurally-derived models on synthetic and real-world networks, helping delineate the contexts in which the different frameworks are appropriate.

[1]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[2]  Ivan Bonamassa,et al.  Synchronization in networks with multiple interaction layers , 2016, Science Advances.

[3]  W. Fulton Eigenvalues, invariant factors, highest weights, and Schubert calculus , 1999, math/9908012.

[4]  Antonios Garas,et al.  Reaction-Diffusion Processes on Interconnected Scale-Free Networks , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Matteo Magnani,et al.  Spreading Processes in Multilayer Networks , 2014, IEEE Transactions on Network Science and Engineering.

[6]  A. Arenas,et al.  Abrupt transition in the structural formation of interconnected networks , 2013, Nature Physics.

[7]  Sergio Gómez,et al.  Competing spreading processes on multiplex networks: awareness and epidemics , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Fabian J. Theis,et al.  The Heckscher-Ohlin Model and the Network Structure of International Trade , 2011 .

[9]  Giuseppe Mangioni,et al.  Community Structure in the Multi-network of International Trade , 2010, CompleNet.

[10]  N. Christakis,et al.  Social network targeting to maximise population behaviour change: a cluster randomised controlled trial , 2015, The Lancet.

[11]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[12]  G. Fagiolo,et al.  The evolution of the world trade web: a weighted-network analysis , 2008 .

[13]  Mason A. Porter,et al.  Multilayer networks , 2013, J. Complex Networks.

[14]  T. Tao,et al.  The honeycomb model of _{}(ℂ) tensor products I: Proof of the saturation conjecture , 1999 .

[15]  Miguel Romance,et al.  Eigenvector centrality of nodes in multiplex networks , 2013, Chaos.

[16]  Sergio Gómez,et al.  Spectral properties of the Laplacian of multiplex networks , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Diego Garlaschelli,et al.  Fitness-dependent topological properties of the world trade web. , 2004, Physical review letters.

[18]  Sergio Gómez,et al.  Ranking in interconnected multilayer networks reveals versatile nodes , 2015, Nature Communications.

[19]  Sergio Gómez,et al.  Random walk centrality in interconnected multilayer networks , 2015, ArXiv.

[20]  Filippo Radicchi,et al.  Redundant Interdependencies Boost the Robustness of Multiplex Networks , 2016, 1610.05378.

[21]  Marián Boguñá,et al.  Correlations in weighted networks. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Conrado J. Pérez Vicente,et al.  Diffusion dynamics on multiplex networks , 2012, Physical review letters.

[23]  Quan Li,et al.  Dyadic military conflict, security alliances, and bilateral FDI flows , 2010 .

[24]  Mason A. Porter,et al.  Structure of triadic relations in multiplex networks , 2013, ArXiv.

[25]  Ernesto Estrada,et al.  Communicability reveals a transition to coordinated behavior in multiplex networks , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Jianxi Gao,et al.  Vulnerability and controllability of networks of networks , 2015 .

[27]  Giorgio Fagiolo,et al.  On the Topological Properties of the World Trade Web: A Weighted Network Analysis , 2007, 0708.4359.

[28]  Kyu-Min Lee,et al.  Strength of weak layers in cascading failures on multiplex networks: case of the international trade network , 2016, Scientific Reports.

[29]  Wassily Leontief Input-Output Economics , 1966 .

[30]  Giorgio Fagiolo,et al.  Multinetwork of international trade: a commodity-specific analysis. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Marián Boguñá,et al.  Topology of the world trade web. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  Stephen P. Borgatti,et al.  Centrality and network flow , 2005, Soc. Networks.

[33]  Zeev Maoz,et al.  The Effects of Strategic and Economic Interdependence on International Conflict Across Levels of Analysis , 2009 .

[34]  Ljupco Kocarev,et al.  Discrete-time distributed consensus on multiplex networks , 2014 .

[35]  M. Fiedler Laplacian of graphs and algebraic connectivity , 1989 .

[36]  Jukka-Pekka Onnela,et al.  Community Structure in Time-Dependent, Multiscale, and Multiplex Networks , 2009, Science.

[37]  Mark E. J. Newman A measure of betweenness centrality based on random walks , 2005, Soc. Networks.

[38]  Z. Wang,et al.  The structure and dynamics of multilayer networks , 2014, Physics Reports.

[39]  Meric S. Gertler,et al.  The Oxford Handbook of Economic Geography , 2003 .

[40]  Arun G. Chandrasekhar,et al.  The Diffusion of Microfinance , 2012, Science.

[41]  Mason A. Porter,et al.  Author Correction: The physics of spreading processes in multilayer networks , 2016, 1604.02021.

[42]  Andrew G. Long,et al.  Trading for Security: Military Alliances and Economic Agreements* , 2006 .

[43]  Marián Boguñá,et al.  Patterns of dominant flows in the world trade web , 2007, 0704.1225.

[44]  Albert Solé-Ribalta,et al.  Navigability of interconnected networks under random failures , 2013, Proceedings of the National Academy of Sciences.

[45]  Dima Shepelyansky,et al.  Google matrix analysis of the multiproduct world trade network , 2015, ArXiv.

[46]  Scott D. Pauls,et al.  Stability of the World Trade Web over Time - An Extinction Analysis , 2011, 1104.4380.

[47]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[48]  A. Arenas,et al.  Mathematical Formulation of Multilayer Networks , 2013, 1307.4977.

[49]  D. Shepelyansky,et al.  Freed by interaction kinetic states in the Harper model , 2015, 1509.02788.

[50]  Alexandre Arenas,et al.  Untangling the role of diverse social dimensions in the diffusion of microfinance , 2016, Applied Network Science.

[51]  Richard A. Brualdi,et al.  The Mutually Beneficial Relationship of Graphs and Matrices , 2011 .

[52]  D. Garlaschelli,et al.  Structure and evolution of the world trade network , 2005, physics/0502066.