The Non-Archimedean Theory of Discrete Systems

In the paper, we study behaviour of discrete dynamical systems (automata) w.r.t. transitivity; that is, speaking loosely, we consider how diverse may be behaviour of the system w.r.t. variety of word transformations performed by the system: we call a system completely transitive if, given arbitrary pair a, b of finite words that have equal lengths, the system $${\mathfrak{A}}$$ , while evolution during (discrete) time, at a certain moment transforms a into b. To every system $${\mathfrak{A}}$$ , we put into a correspondence a family $${\mathcal{F}_{\mathfrak{A}}}$$ of continuous mappings of a suitable non-Archimedean metric space and show that the system is completely transitive if and only if the family $${\mathcal{F}_{\mathfrak{A}}}$$ is ergodic w.r.t. the Haar measure; then we find easy-to-verify conditions the system must satisfy to be completely transitive. The theory can be applied to analyse behaviour of straight-line computer programs (in particular, pseudo-random number generators that are used in cryptography and simulations) since basic CPU instructions (both numerical and logical) can be considered as continuous mappings of a (non-Archimedean) metric space $${\mathbb{Z}_{2}}$$ of 2-adic integers.

[1]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[2]  W. H. Schikhof Ultrametric Calculus: An Introduction to p-Adic Analysis , 1984 .

[3]  Vladimir Anashin,et al.  Uniformly distributed sequences of p-adic integers, II , 2002, math/0209407.

[4]  Jean Vuillemin,et al.  On Circuits and Numbers , 1994, IEEE Trans. Computers.

[5]  N. Koblitz p-adic Numbers, p-adic Analysis, and Zeta-Functions , 1977 .

[6]  C. H. Roth,et al.  Fundamentals of logic design , 1975 .

[7]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[8]  Vladimir Anashin,et al.  Non-Archimedean Ergodic Theory and Pseudorandom Generators , 2007, Comput. J..

[9]  Fernando Q. Gouvêa p -adic Numbers , 1993 .

[10]  J. Shallit,et al.  Automatic Sequences: Contents , 2003 .

[11]  Jeffrey Shallit,et al.  Automatic Sequences: Theory, Applications, Generalizations , 2003 .

[12]  Jeffrey Shallit,et al.  Automatic Sequences by Jean-Paul Allouche , 2003 .

[13]  J. Shallit,et al.  Automatic Sequences: Frequency of Letters , 2003 .

[14]  V. S. Anachin Uniformly distributed sequences ofp-adic integers , 1994 .

[15]  Berndt Farwer,et al.  ω-automata , 2002 .

[16]  R. Grigorchuk,et al.  Some topics in the dynamics of group actions on rooted trees , 2011 .

[17]  Michael A. Arbib,et al.  Topics in Mathematical System Theory , 1969 .

[18]  Jean Vuillemin,et al.  Digital Algebra and Circuits , 2003, Verification: Theory and Practice.

[19]  Donald Ervin Knuth,et al.  The Art of Computer Programming, Volume II: Seminumerical Algorithms , 1970 .

[20]  Andrei Khrennikov,et al.  Applied Algebraic Dynamics , 2009 .

[21]  Fernando Q. Gouvêa,et al.  P-Adic Numbers: An Introduction , 1993 .

[22]  Vladimir Anashin,et al.  Uniformly distributed sequences in computer algebra or how to construct program generators of random numbers , 1998 .

[23]  A. M. Michael,et al.  Irrigation, Theory and Practice , 1978 .

[24]  Jean-Éric Pin,et al.  Profinite Methods in Automata Theory , 2009, STACS.

[25]  Jean Vuillemin Finite Digital Synchronous Circuits Are Characterized by 2-Algebraic Truth Tables , 2000, ASIAN.

[26]  Charalambos D. Aliprantis,et al.  Principles of Real Analysis , 1981 .