Data-driven time-frequency analysis of multivariate data

[1]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[2]  Rodrigo Quian Quiroga,et al.  Nonlinear multivariate analysis of neurophysiological signals , 2005, Progress in Neurobiology.

[3]  Andrzej Cichocki,et al.  Emotional States Estimation from Multichannel EEG Maps , 2008 .

[4]  Norden E. Huang,et al.  On Instantaneous Frequency , 2009, Adv. Data Sci. Adapt. Anal..

[5]  Patrick Flandrin,et al.  A complete ensemble empirical mode decomposition with adaptive noise , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[6]  M. Hulle,et al.  The Delay Vector Variance Method for Detecting Determinism and Nonlinearity in Time Series , 2004 .

[7]  James Theiler,et al.  Testing for nonlinearity in time series: the method of surrogate data , 1992 .

[8]  Gabriel Rilling,et al.  On empirical mode decomposition and its algorithms , 2003 .

[9]  E. Bedrosian A Product Theorem for Hilbert Transforms , 1963 .

[10]  Tania Stathaki,et al.  Image Fusion: Algorithms and Applications , 2008 .

[11]  Toshihisa Tanaka,et al.  Multichannel spectral pattern separation - An EEG processing application - , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[12]  N. Huang,et al.  The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[13]  James Llinas,et al.  Multisensor Data Fusion , 1990 .

[14]  Steve McLaughlin,et al.  Development of EMD-Based Denoising Methods Inspired by Wavelet Thresholding , 2009, IEEE Transactions on Signal Processing.

[15]  Slawomir J. Nasuto,et al.  A novel approach to the detection of synchronisation in EEG based on empirical mode decomposition , 2007, Journal of Computational Neuroscience.

[16]  Steven M. LaValle,et al.  Deterministic sampling methods for spheres and SO(3) , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[17]  Yl L. Xu,et al.  CHARACTERIZING NONSTATIONARY WIND SPEED USING EMPIRICAL MODE DECOMPOSITION , 2004 .

[18]  D. P. Mandic,et al.  Multivariate empirical mode decomposition , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[19]  A. Ardeshir Goshtasby,et al.  Fusion of multi-exposure images , 2005, Image Vis. Comput..

[20]  Steve McLaughlin,et al.  Improved EMD Using Doubly-Iterative Sifting and High Order Spline Interpolation , 2008, EURASIP J. Adv. Signal Process..

[21]  Danilo P. Mandic,et al.  Application of multivariate empirical mode decomposition for seizure detection in EEG signals , 2010, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology.

[22]  D.P Mandic,et al.  On the characterization of the deterministic/stochastic and linear/nonlinear nature of time series , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[23]  Muhammad Altaf,et al.  Rotation Invariant Complex Empirical Mode Decomposition , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[24]  T. Schreiber,et al.  Surrogate time series , 1999, chao-dyn/9909037.

[25]  Gabriel Rilling,et al.  One or Two Frequencies? The Empirical Mode Decomposition Answers , 2008, IEEE Transactions on Signal Processing.

[26]  N. Huang,et al.  A study of the characteristics of white noise using the empirical mode decomposition method , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[27]  Hans-Peter Blatt,et al.  Discrepancy Estimates on the Sphere , 1999 .

[28]  Norden E. Huang,et al.  Ensemble Empirical Mode Decomposition: a Noise-Assisted Data Analysis Method , 2009, Adv. Data Sci. Adapt. Anal..

[29]  D. P. Mandic,et al.  Measuring phase synchrony using complex extensions of EMD , 2009, 2009 IEEE/SP 15th Workshop on Statistical Signal Processing.

[30]  Khaled H. Hamed,et al.  Time-frequency analysis , 2003 .

[31]  Norden E. Huang,et al.  A review on Hilbert‐Huang transform: Method and its applications to geophysical studies , 2008 .

[32]  Andreas Koschan,et al.  Image Fusion and Enhancement via Empirical Mode Decomposition , 2006 .

[33]  S. Mallat A wavelet tour of signal processing , 1998 .

[34]  Toshihisa Tanaka,et al.  An Auditory Oddball Based Brain-Computer Interface System Using Multivariate EMD , 2010, ICIC.

[35]  Jianjun Cui,et al.  Equidistribution on the Sphere , 1997, SIAM J. Sci. Comput..

[36]  James F. Kaiser,et al.  The use of a masking signal to improve empirical mode decomposition , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[37]  Mo Chen,et al.  Qualitative assessment of intrinsic mode functions of empirical mode decomposition , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[38]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[39]  Steve McLaughlin,et al.  Investigation and Performance Enhancement of the Empirical Mode Decomposition Method Based on a Heuristic Search Optimization Approach , 2008, IEEE Transactions on Signal Processing.

[40]  S. S. Shen,et al.  A confidence limit for the empirical mode decomposition and Hilbert spectral analysis , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[41]  Slawomir J. Nasuto,et al.  Evaluation of Empirical Mode Decomposition for Event-Related Potential Analysis , 2011, EURASIP J. Adv. Signal Process..

[42]  Cheng Junsheng,et al.  Research on the intrinsic mode function (IMF) criterion in EMD method , 2006 .

[43]  Lotfi Senhadji,et al.  3A-EMD: A generalized approach for monovariate and multivariate EMD , 2010, 10th International Conference on Information Science, Signal Processing and their Applications (ISSPA 2010).

[44]  Ram Bilas Pachori,et al.  Discrimination between Ictal and Seizure-Free EEG Signals Using Empirical Mode Decomposition , 2008, J. Electr. Comput. Eng..

[45]  Gabriel Rilling,et al.  Bivariate Empirical Mode Decomposition , 2007, IEEE Signal Processing Letters.

[46]  Kumpati S. Narendra,et al.  Identification and control of dynamical systems using neural networks , 1990, IEEE Trans. Neural Networks.

[47]  Danilo P. Mandic,et al.  Empirical Mode Decomposition for Trivariate Signals , 2010, IEEE Transactions on Signal Processing.

[48]  Wenxian Yang,et al.  Monitoring wind turbine condition by the approach of Empirical Mode Decomposition , 2008, 2008 International Conference on Electrical Machines and Systems.

[49]  Norden E. Huang,et al.  The Time-Dependent Intrinsic Correlation Based on the Empirical Mode Decomposition , 2010, Adv. Data Sci. Adapt. Anal..

[50]  Angelo M. Sabatini,et al.  Quaternion-based strap-down integration method for applications of inertial sensing to gait analysis , 2006, Medical and Biological Engineering and Computing.

[51]  Paulo Gonçalves,et al.  Empirical Mode Decompositions as Data-Driven Wavelet-like Expansions , 2004, Int. J. Wavelets Multiresolution Inf. Process..

[52]  James Llinas,et al.  An introduction to multisensor data fusion , 1997, Proc. IEEE.

[53]  Patrick Flandrin,et al.  Time-Frequency/Time-Scale Analysis , 1998 .

[54]  Paul Honeine,et al.  Testing Stationarity With Surrogates: A Time-Frequency Approach , 2010, IEEE Transactions on Signal Processing.

[55]  Lihua Yang,et al.  The study of the intermittency test filtering character of Hilbert-Huang transform , 2005, Math. Comput. Simul..

[56]  Lotfi Senhadji,et al.  Turning Tangent Empirical Mode Decomposition: A Framework for Mono- and Multivariate Signals , 2011, IEEE Transactions on Signal Processing.

[57]  Ali Yener Mutlu,et al.  Multivariate Empirical Mode Decomposition for Quantifying Multivariate Phase Synchronization , 2011, EURASIP J. Adv. Signal Process..

[58]  Boualem Boashash,et al.  Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals , 1992, Proc. IEEE.

[59]  Tomasz M. Rutkowski,et al.  Bivariate EMD-based image fusion , 2009, 2009 IEEE/SP 15th Workshop on Statistical Signal Processing.

[60]  N. Huang,et al.  A new view of nonlinear water waves: the Hilbert spectrum , 1999 .

[61]  H. Kantz,et al.  Nonlinear time series analysis , 1997 .

[62]  Charles K. Chui,et al.  An Introduction to Wavelets , 1992 .

[63]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[64]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[65]  Gonzalo Pajares,et al.  A wavelet-based image fusion tutorial , 2004, Pattern Recognit..

[66]  S. Rice Mathematical analysis of random noise , 1944 .

[67]  Toshihisa Tanaka,et al.  Complex Empirical Mode Decomposition , 2007, IEEE Signal Processing Letters.

[68]  Chin-Kun Hu,et al.  Empirical mode decomposition and synchrogram approach to cardiorespiratory synchronization. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[69]  Dean G. Duffy,et al.  The Application of Hilbert-Huang Transforms to Meteorological Datasets , 2004 .

[70]  Christophe Damerval,et al.  A fast algorithm for bidimensional EMD , 2005, IEEE Signal Processing Letters.

[71]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[72]  Danilo P. Mandic,et al.  A machine learning enhanced empirical mode decomposition , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[73]  Jean Claude Nunes,et al.  Image analysis by bidimensional empirical mode decomposition , 2003, Image Vis. Comput..

[74]  H. Madsen,et al.  Resolving Nonstationary Spectral Information in Wind Speed Time Series Using the Hilbert-Huang Transform , 2010 .

[75]  Anthony G. Constantinides,et al.  Data Fusion for Modern Engineering Applications: An Overview , 2005, ICANN.

[76]  Philip S. Yu,et al.  Local Correlation Tracking in Time Series , 2006, Sixth International Conference on Data Mining (ICDM'06).