An offline–online homogenization strategy to solve quasilinear two‐scale problems at the cost of one‐scale problems

Inspired by recent analyses of the finite element heterogeneous multiscale method and the reduced basis technique for nonlinear problems, we present a simple and concise finite element algorithm for the reliable and efficient resolution of elliptic or parabolic multiscale problems of nonmonotone type. Solutions of appropriate cell problems on sampling domains are selected by a greedy algorithm in an offline stage and assembled in a reduced basis (RB). This RB is then used in an online stage to solve two-scale problems at a computational cost comparable to the single-scale case. Both the offline and the online cost are independent of the smallest scale in the physical problem. The performance and accuracy of the algorithm are illustrated on 2D and 3D stationary and evolutionary nonlinear multiscale problems.

[1]  Assyr Abdulle,et al.  Reduced basis finite element heterogeneous multiscale method for high-order discretizations of elliptic homogenization problems , 2012, J. Comput. Phys..

[2]  Assyr Abdulle,et al.  Analysis of the finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems , 2013, Math. Comput..

[3]  J. Hesthaven,et al.  Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations , 2007 .

[4]  Christian Miehe,et al.  On the homogenization analysis of composite materials based on discretized fluctuations on the micro-structure , 2002 .

[5]  F. Talati,et al.  Analysis of heat conduction in a disk brake system , 2009 .

[6]  Assyr Abdulle,et al.  Erratum to ''A short and versatile finite element multiscale code for homogenization problems" (Comput. Methods Appl. Mech. Engrg. 198 (2009) 2839-2859) , 2010 .

[7]  Assyr Abdulle Discontinuous Galerkin finite element heterogeneous multiscale method for elliptic problems with multiple scales , 2012, Math. Comput..

[8]  Vidar Thomée,et al.  A Lumped Mass Finite-element Method with Quadrature for a Non-linear Parabolic Problem , 1985 .

[9]  Nicola Fusco,et al.  On the homogenization of quasilinear divergence structure operators , 1986 .

[10]  I. Babuska,et al.  Generalized Finite Element Methods: Their Performance and Their Relation to Mixed Methods , 1983 .

[11]  Michel Artola,et al.  Un résultat d'homogénéisation pour une classe de problèmes de diffusion non linéaires stationnaires , 1982 .

[12]  E Weinan,et al.  The Heterognous Multiscale Methods , 2003 .

[13]  D. Rovas,et al.  Reduced--Basis Output Bound Methods for Parametrized Partial Differential Equations , 2002 .

[14]  E. Weinan,et al.  Analysis of the heterogeneous multiscale method for elliptic homogenization problems , 2004 .

[15]  V. G. Kouznetsova,et al.  Multi-scale computational homogenization: Trends and challenges , 2010, J. Comput. Appl. Math..

[16]  Assyr Abdulle,et al.  A priori error estimates for finite element methods with numerical quadrature for nonmonotone nonlinear elliptic problems , 2011, Numerische Mathematik.

[17]  N. Kikuchi,et al.  A class of general algorithms for multi-scale analyses of heterogeneous media , 2001 .

[18]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[19]  J. Fish,et al.  Multiscale asymptotic homogenization for multiphysics problems with multiple spatial and temporal scales: a coupled thermo-viscoelastic example problem , 2002 .

[20]  J. Douglas,et al.  A Galerkin method for a nonlinear Dirichlet problem , 1975 .

[21]  G. Nath,et al.  Development of flow and heat transfer of a viscous fluid in the stagnation-point region of a three-dimensional body with a magnetic field , 1999 .

[22]  Somnath Ghosh,et al.  Concurrent multi-scale analysis of elastic composites by a multi-level computational model , 2004 .

[23]  Assyr Abdulle,et al.  A short and versatile finite element multiscale code for homogenization problems , 2009 .

[24]  E Weinan,et al.  The heterogeneous multiscale method* , 2012, Acta Numerica.

[25]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[26]  Assyr Abdulle,et al.  Adaptive reduced basis finite element heterogeneous multiscale method , 2013 .

[27]  Assyr Abdulle,et al.  On A Priori Error Analysis of Fully Discrete Heterogeneous Multiscale FEM , 2005, Multiscale Model. Simul..

[28]  Assyr Abdulle,et al.  Coupling heterogeneous multiscale FEM with Runge-Kutta methods for parabolic homogenization problems: a fully discrete space-time analysis , 2012 .

[29]  Philippe G. Ciarlet,et al.  THE COMBINED EFFECT OF CURVED BOUNDARIES AND NUMERICAL INTEGRATION IN ISOPARAMETRIC FINITE ELEMENT METHODS , 1972 .

[30]  Assyr Abdulle,et al.  Adaptive finite element heterogeneous multiscale method for homogenization problems , 2011 .

[31]  E. Saar Multiscale Methods , 2006, astro-ph/0612370.

[32]  A. Abdulle ANALYSIS OF A HETEROGENEOUS MULTISCALE FEM FOR PROBLEMS IN ELASTICITY , 2006 .

[33]  V. Zhikov,et al.  Homogenization of Differential Operators and Integral Functionals , 1994 .

[34]  J. Chaboche,et al.  FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials , 2000 .

[35]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[36]  A. Abdulle,et al.  Reduced basis finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems , 2014 .

[37]  J. Tinsley Oden,et al.  Hierarchical modeling of heterogeneous solids , 1996 .