An offline–online homogenization strategy to solve quasilinear two‐scale problems at the cost of one‐scale problems
暂无分享,去创建一个
Assyr Abdulle | Gilles Vilmart | Yun Bai | A. Abdulle | Y. Bai | G. Vilmart | Yun Bai
[1] Assyr Abdulle,et al. Reduced basis finite element heterogeneous multiscale method for high-order discretizations of elliptic homogenization problems , 2012, J. Comput. Phys..
[2] Assyr Abdulle,et al. Analysis of the finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems , 2013, Math. Comput..
[3] J. Hesthaven,et al. Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations , 2007 .
[4] Christian Miehe,et al. On the homogenization analysis of composite materials based on discretized fluctuations on the micro-structure , 2002 .
[5] F. Talati,et al. Analysis of heat conduction in a disk brake system , 2009 .
[6] Assyr Abdulle,et al. Erratum to ''A short and versatile finite element multiscale code for homogenization problems" (Comput. Methods Appl. Mech. Engrg. 198 (2009) 2839-2859) , 2010 .
[7] Assyr Abdulle. Discontinuous Galerkin finite element heterogeneous multiscale method for elliptic problems with multiple scales , 2012, Math. Comput..
[8] Vidar Thomée,et al. A Lumped Mass Finite-element Method with Quadrature for a Non-linear Parabolic Problem , 1985 .
[9] Nicola Fusco,et al. On the homogenization of quasilinear divergence structure operators , 1986 .
[10] I. Babuska,et al. Generalized Finite Element Methods: Their Performance and Their Relation to Mixed Methods , 1983 .
[11] Michel Artola,et al. Un résultat d'homogénéisation pour une classe de problèmes de diffusion non linéaires stationnaires , 1982 .
[12] E Weinan,et al. The Heterognous Multiscale Methods , 2003 .
[13] D. Rovas,et al. Reduced--Basis Output Bound Methods for Parametrized Partial Differential Equations , 2002 .
[14] E. Weinan,et al. Analysis of the heterogeneous multiscale method for elliptic homogenization problems , 2004 .
[15] V. G. Kouznetsova,et al. Multi-scale computational homogenization: Trends and challenges , 2010, J. Comput. Appl. Math..
[16] Assyr Abdulle,et al. A priori error estimates for finite element methods with numerical quadrature for nonmonotone nonlinear elliptic problems , 2011, Numerische Mathematik.
[17] N. Kikuchi,et al. A class of general algorithms for multi-scale analyses of heterogeneous media , 2001 .
[18] N. Nguyen,et al. An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .
[19] J. Fish,et al. Multiscale asymptotic homogenization for multiphysics problems with multiple spatial and temporal scales: a coupled thermo-viscoelastic example problem , 2002 .
[20] J. Douglas,et al. A Galerkin method for a nonlinear Dirichlet problem , 1975 .
[21] G. Nath,et al. Development of flow and heat transfer of a viscous fluid in the stagnation-point region of a three-dimensional body with a magnetic field , 1999 .
[22] Somnath Ghosh,et al. Concurrent multi-scale analysis of elastic composites by a multi-level computational model , 2004 .
[23] Assyr Abdulle,et al. A short and versatile finite element multiscale code for homogenization problems , 2009 .
[24] E Weinan,et al. The heterogeneous multiscale method* , 2012, Acta Numerica.
[25] A. Patera,et al. Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .
[26] Assyr Abdulle,et al. Adaptive reduced basis finite element heterogeneous multiscale method , 2013 .
[27] Assyr Abdulle,et al. On A Priori Error Analysis of Fully Discrete Heterogeneous Multiscale FEM , 2005, Multiscale Model. Simul..
[28] Assyr Abdulle,et al. Coupling heterogeneous multiscale FEM with Runge-Kutta methods for parabolic homogenization problems: a fully discrete space-time analysis , 2012 .
[29] Philippe G. Ciarlet,et al. THE COMBINED EFFECT OF CURVED BOUNDARIES AND NUMERICAL INTEGRATION IN ISOPARAMETRIC FINITE ELEMENT METHODS , 1972 .
[30] Assyr Abdulle,et al. Adaptive finite element heterogeneous multiscale method for homogenization problems , 2011 .
[31] E. Saar. Multiscale Methods , 2006, astro-ph/0612370.
[32] A. Abdulle. ANALYSIS OF A HETEROGENEOUS MULTISCALE FEM FOR PROBLEMS IN ELASTICITY , 2006 .
[33] V. Zhikov,et al. Homogenization of Differential Operators and Integral Functionals , 1994 .
[34] J. Chaboche,et al. FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials , 2000 .
[35] A. Bensoussan,et al. Asymptotic analysis for periodic structures , 1979 .
[36] A. Abdulle,et al. Reduced basis finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems , 2014 .
[37] J. Tinsley Oden,et al. Hierarchical modeling of heterogeneous solids , 1996 .