Fabrication of low pull-in voltage RF MEMS switches on glass substrate in recessed CPW configuration for V-band application

A new technique for the fabrication of radio frequency (RF) microelectromechanical systems (MEMS) shunt switches in recessed coplaner waveguide (CPW) configuration on glass substrates is presented. Membranes with low spring constant are used for reducing the pull-in voltage. A layer of silicon dioxide is deposited on glass wafer and is used to form the recess, which partially defines the gap between the membrane and signal line. Positive photoresist S1813 is used as a sacrificial layer and gold as the membrane material. The membranes are released with the help of Pirhana solution and finally rinsed in low surface tension liquid to avoid stiction during release. Switches with 500 µm long two-meander membranes show very high isolation of greater than 40 dB at their resonant frequency of 61 GHz and pull-in voltage less than 15 V, while switches with 700 µm long six-strip membranes show isolation greater than 30 dB at the frequency of 65 GHz and pull-in voltage less than 10 V. Both types of switches show insertion loss less than 0.65 dB up to 65 GHz.

[1]  Gabriel M. Rebeiz,et al.  High-isolation CPW MEMS shunt switches. 2. Design , 2000 .

[2]  Y. H. Tan,et al.  Polishing of poly(methyl methacrylate), polycarbonate, and SU-8 polymers , 2007 .

[3]  R. Legtenberg,et al.  Stiction in surface micromachining , 1996 .

[4]  N. F. de Rooij,et al.  Integrated circuit compatible electrostatic polysilicon microrelays , 1995 .

[5]  C. Nguyen,et al.  Design of low actuation voltage RF MEMS switch , 2000, 2000 IEEE MTT-S International Microwave Symposium Digest (Cat. No.00CH37017).

[6]  Milton Feng,et al.  Ultra Broadband MEMS Switch on Silicon and GaAs Substrates , 2003 .

[7]  Horacio Dante Espinosa,et al.  A methodology for determining mechanical properties of freestanding thin films and MEMS materials , 2003 .

[8]  J. Söderkvist,et al.  High-sensitivity surface micromachined structures for internal stress and stress gradient evaluation , 1997 .

[9]  Yuli Vladimirsky,et al.  Materials and Device Characterization in Micromachining II , 1999 .

[10]  Ai Qun Liu,et al.  Mechanical characterization of micromachined capacitive switches: design consideration and experimental verification , 2003 .

[11]  Yu Liu,et al.  Low-loss distributed MEMS phase shifter , 2000 .

[12]  A. DasGupta,et al.  Fabrication of Reliable RF MEMS Switches in CPW Configuration , 2009 .

[13]  M. Parameswaran,et al.  Polydimethylglutarimide (PMGI) as a structural material for surface micromachining , 2008 .

[14]  Gabriel M. Rebeiz,et al.  A differential 4-bit 6.5-10-GHz RF MEMS tunable filter , 2005, IEEE Transactions on Microwave Theory and Techniques.

[15]  Carles Cané,et al.  Measurement of residual stresses in micromachined structures in a microregion , 2006 .

[16]  Chang-Jin Kim,et al.  Elimination of extra spring effect at the step-up anchor of surface-micromachined structure , 1998 .

[17]  M.T.W. de Langen Low Cost Flip Chip Technology , 1997 .

[18]  Ai Qun Liu,et al.  Improvement of isolation for MEMS capacitive switch via membrane planarization , 2005 .

[19]  Nadim Maluf,et al.  An Introduction to Microelectromechanical Systems Engineering , 2000 .

[20]  Peter M. Osterberg,et al.  Electrostatically actuated microelectromechanical test structures for material property measurement , 1995 .

[21]  Ito Takahiro,et al.  Fabrication of micro IC probe for LSI testing , 2000 .

[22]  S. R. Young,et al.  A novel low-temperature method to fabricate MEMS resonators using PMGI as a sacrificial layer , 2005 .

[23]  Alvise Bagolini,et al.  Stress characterization of electroplated gold layers for low temperature surface micromachining , 2003, Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS 2003..

[24]  G.M. Rebeiz,et al.  Inline capacitive and DC-contact MEMS shunt switches , 2001, IEEE Microwave and Wireless Components Letters.

[25]  Gabriel M. Rebeiz,et al.  High-isolation CPW MEMS shunt switches. 1. Modeling , 2000 .

[26]  Amitava DasGupta,et al.  Low-temperature wet-release process for low stiffness structures , 2008 .

[27]  C. Mastrangelo,et al.  A simple experimental technique for the measurement of the work of adhesion of microstructures , 1992, Technical Digest IEEE Solid-State Sensor and Actuator Workshop.

[28]  Yanhang Zhang,et al.  The deformation of microcantilever-based infrared detectors during thermal cycling , 2008 .

[29]  Milton Feng,et al.  Reliability Study of Low-Voltage RF MEMS Switches , 2002 .

[30]  W. Fang,et al.  Determining mean and gradient residual stresses in thin films using micromachined cantilevers , 1996 .

[31]  Laurent Dussopt,et al.  Miniature and tunable filters using MEMS capacitors , 2003 .

[32]  Ai Qun Liu,et al.  CPW band-stop filter using unloaded and loaded EBG structures , 2005 .

[33]  Arokiaswami Alphones,et al.  A tunable bandstop filter via the capacitance change of micromachined switches , 2006 .

[34]  K. Petersen Micromechanical membrane switches on silicon , 1979 .

[35]  Gabriel M. Rebeiz,et al.  W-band CPW RF MEMS circuits on quartz substrates , 2003 .

[36]  H. D. L. Santos Introduction to Microelectromechanical(MEM)Microwave Systems , 1999 .

[37]  C. Neugebauer Tensile Properties of Thin, Evaporated Gold Films , 1960 .

[38]  A. Malczewski,et al.  RF MEMs variable capacitors for tunable filters , 1999 .

[39]  Michael Kraft,et al.  Design Optimisation of an Electrostatic MEMS Actuator with Low Spring Constant for an "Atom Chip" , 2005 .

[40]  S. Senturia,et al.  M-TEST: A test chip for MEMS material property measurement using electrostatically actuated test structures , 1997 .

[41]  Gabriel M. Rebeiz,et al.  A 12-18-GHz three-pole RF MEMS tunable filter , 2005, IEEE Transactions on Microwave Theory and Techniques.

[42]  Qing-An Huang,et al.  RF MEMS membrane switches on GaAs substrates for X-band applications , 2005 .

[43]  Gabriel M. Rebeiz,et al.  Distributed MEMS true-time delay phase shifters and wide-band switches , 1998 .

[44]  Koichi Imanaka,et al.  Development of a large-force low-loss metal-contact RF MEMS switch , 2006 .