Fault Diagnosis Using Set-Membership Approaches

As discussed in Chap. 4, model-based fault detection of dynamic processes is based on the use of models (i.e., analytical redundancy) to check the consistency of observed behaviours. However, when building a model of a dynamic process to monitor its behaviour, there is always some mismatch between the modelled and real behaviour due to the fact that some effects are neglected, some non-linearities are linearised in order to simplify the model, some parameters have tolerance when are compared between several units of the same component, some errors in parameters (or in the structure) of the model are introduced in the model identification process, etc. These modelling errors introduce some uncertainty in the model.

[1]  Vicenç Puig,et al.  Passive Robust Fault Detection Using Non-Linear Interval Observers: Application to the DAMADICS Benchmark Problem , 2003 .

[2]  Eduardo F. Camacho,et al.  Guaranteed state estimation by zonotopes , 2005, Autom..

[3]  Josep Vehí,et al.  Fault detection and isolation of the three-tank system using the modal interval analysis , 2002 .

[4]  Dan T. Horak Failure detection in dynamic systems with modeling errors , 1988 .

[5]  Lubomir V. Kolev,et al.  Interval Methods for Circuit Analysis , 1993, Advanced Series in Circuits and Systems.

[6]  P. Gahinet,et al.  H∞ design with pole placement constraints: an LMI approach , 1996, IEEE Trans. Autom. Control..

[7]  M. M. Akhter,et al.  Effect of model uncertainty on failure detection: the threshold selector , 1988 .

[8]  Eduardo F. Camacho,et al.  Bounded error identification of systems with time-varying parameters , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[9]  Stéphane Ploix,et al.  Causal fault detection and isolation based on a set-membership approach , 2004, Autom..

[10]  Giuseppe Carlo Calafiore,et al.  Interval predictor models: Identification and reliability , 2009, Autom..

[11]  Luigi Chisci,et al.  Recursive state bounding by parallelotopes , 1996, Autom..

[12]  Giuseppe Calafiore,et al.  A set-valued non-linear filter for robust localization , 2001, 2001 European Control Conference (ECC).

[13]  Stéphane Ploix,et al.  Parameter uncertainty computation in static linear models , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[14]  Donald E. Knuth,et al.  Elementary Problems: E3301-E3306 , 1989 .

[15]  J. Norton,et al.  Bounding Approaches to System Identification , 1996 .

[16]  Giuseppe Carlo Calafiore,et al.  Identification of Reliable Predictor Models for Unknown Systems: a Data-Consistency Approach based on Learning Theory , 2002 .

[17]  Bernhard Rinner,et al.  Online monitoring by dynamically refining imprecise models , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[18]  Dominique Sauter,et al.  Robust fault detection in uncertain dynamic systems , 2000, Autom..

[19]  Vicenç Puig,et al.  Robust fault detection using zonotope‐based set‐membership consistency test , 2009 .

[20]  Vicenç Puig,et al.  Robust Fault Detection with Unknown-Input Interval Observers using Zonotopes , 2008 .

[21]  Shankar P. Bhattacharyya,et al.  Robust Control: The Parametric Approach , 1995 .

[22]  Ari Ingimundarson,et al.  Robust fault detection using a consistency-based state estimation test considering unknown but bounded noise and parametric uncertainty , 2007, 2007 European Control Conference (ECC).

[23]  J. Quevedo,et al.  Fault detection of a gas turbine fuel actuator based on qualitative causal models , 2001, 2001 European Control Conference (ECC).

[24]  Wilson J. Rugh,et al.  Research on gain scheduling , 2000, Autom..

[25]  Janos Gertler,et al.  Fault detection and diagnosis in engineering systems , 1998 .

[26]  Josep Vehí,et al.  SQualTrack: A Tool for Robust Fault Detection , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[27]  Teresa Escobet,et al.  The Ca~En Diagnosis System and its Automatic Modelling Method , 2001, Computación y Sistemas.

[28]  Jie Chen,et al.  Robust Model-Based Fault Diagnosis for Dynamic Systems , 1998, The International Series on Asian Studies in Computer and Information Science.

[29]  Rolf Isermann,et al.  Fault-diagnosis systems : an introduction from fault detection to fault tolerance , 2006 .

[30]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[31]  Stéphane Ploix,et al.  Parity relations for linear uncertain dynamic systems , 2006, Autom..

[32]  Vicenç Puig,et al.  Passive Robust Fault Detection of Dynamic Processes Using Interval Models , 2008, IEEE Transactions on Control Systems Technology.

[33]  J. Flaus,et al.  Fault Detection Based on Uncertain Models with Bounded Parameters and Bounded Parameter Variations , 2008 .

[34]  Vicenç Puig,et al.  Worst-Case Simulation of Discrete Linear Time-Invariant Interval Dynamic Systems , 2003, Reliab. Comput..

[35]  Teresa Escobet,et al.  Robust fault detection using interval models , 2003, 2003 European Control Conference (ECC).

[36]  Jan Lunze,et al.  ROBUST DIAGNOSIS USING STATE-SET OBSERVATION , 2006 .

[37]  Dominique Sauter,et al.  Optimal thresholding for robust fault detection of uncertain systems , 2000 .

[38]  J. Norton,et al.  State bounding with ellipsoidal set description of the uncertainty , 1996 .

[39]  Eric Walter,et al.  Guaranteed recursive non‐linear state bounding using interval analysis , 2002 .

[40]  Josep Vehí,et al.  A Survey on Interval Model Simulators and their Properties Related to Fault Detection , 2000 .

[41]  Vicenç Puig,et al.  ROBUST FAULT DETECTION USING INTERVAL CONSTRAINTS SATISFACTION AND SET COMPUTATIONS 1 , 2006 .

[42]  J. Shamma,et al.  Approximate set-valued observers for nonlinear systems , 1997, IEEE Trans. Autom. Control..