Combinatorial problems motivated by comma‐free codes

In the paper some combinatorial problems motivated by comma‐free codes are considered. We describe these problems, give the most significant known results and methods used, present some new results and formulate open problems. © 2004 Wiley Periodicals, Inc.

[1]  F H Crick,et al.  CODES WITHOUT COMMAS. , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[2]  S. Golomb,et al.  Comma-Free Codes , 1958, Canadian Journal of Mathematics.

[3]  E. F. Moore,et al.  Variable-length binary encodings , 1959 .

[4]  Edgar N. Gilbert,et al.  Synchronization of binary messages , 1960, IRE Trans. Inf. Theory.

[5]  Vladimir I. Levenshtein Certain Properties of Code Systems , 1962 .

[6]  B. H. Jiggs,et al.  Regent Results in Comma-Free Codes , 1963, Canadian Journal of Mathematics.

[7]  Willard L. Eastman,et al.  On the construction of comma-free codes , 1965, IEEE Trans. Inf. Theory.

[8]  Basil Gordon,et al.  Codes With Bounded Synchronization Delay , 1965, Inf. Control..

[9]  Robert A. Scholtz Maximal and variable word-length comma-free codes , 1969, IEEE Trans. Inf. Theory.

[10]  Leonidas J. Guibas,et al.  String Overlaps, Pattern Matching, and Nontransitive Games , 1981, J. Comb. Theory A.

[11]  J. H. Lint {0,1,*} distance problems in combinatorics , 1985 .

[12]  Solomon W. Golomb,et al.  A New Result on Comma-Free Codes of Even Word-Length , 1987, Canadian Journal of Mathematics.

[13]  Douglas R Stinson,et al.  Contemporary design theory : a collection of surveys , 1992 .

[14]  C. Colbourn,et al.  The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.