The R-Process Alliance: Chemodynamically Tagged Groups. II. An Extended Sample of Halo r-process-enhanced Stars

Orbital characteristics based on Gaia Early Data Release 3 astrometric parameters are analyzed for ∼1700 r-process-enhanced (RPE; [Eu/Fe] > +0.3) metal-poor stars ([Fe/H] ≤ −0.8) compiled from the R-Process Alliance, the GALactic Archaeology with HERMES (GALAH) DR3 survey, and additional literature sources. We find dynamical clusters of these stars based on their orbital energies and cylindrical actions using the HDBSCAN unsupervised learning algorithm. We identify 36 chemodynamically tagged groups (CDTGs) containing between five and 22 members; 17 CDTGs have at least 10 member stars. Previously known Milky Way (MW) substructures such as Gaia-Sausage-Enceladus, the splashed disk, the metal-weak thick disk, the Helmi stream, LMS-1 (Wukong), and Thamnos are reidentified. Associations with MW globular clusters are determined for seven CDTGs; no recognized MW dwarf galaxy satellites were associated with any of our CDTGs. Previously identified dynamical groups are also associated with our CDTGs, adding structural determination information and possible new identifications. Carbon-enhanced metal-poor RPE (CEMP-r) stars are identified among the targets; we assign these to morphological groups in a Yoon–Beers A(C) c versus [Fe/H] diagram. Our results confirm previous dynamical analyses that showed RPE stars in CDTGs share common chemical histories, influenced by their birth environments.

[1]  Rafael M. Santucci,et al.  Reconstructing the Disrupted Dwarf Galaxy Gaia-Sausage/Enceladus Using Its Stars and Globular Clusters , 2022, The Astrophysical Journal.

[2]  T. Beers,et al.  Origin of highly $r$-process-enhanced stars in a cosmological zoom-in simulation of a Milky Way-like galaxy , 2022, 2206.04060.

[3]  E. A. Den Hartog,et al.  The R-process Alliance: A Nearly Complete R-process Abundance Template Derived from Ultraviolet Spectroscopy of the R-process-enhanced Metal-poor Star HD 222925 , 2022, The Astrophysical Journal Supplement Series.

[4]  C. Frenk,et al.  The Chemo-Dynamical Groups of Galactic Globular Clusters , 2022, 2202.00591.

[5]  N. Martin,et al.  The Global Dynamical Atlas of the Milky Way Mergers: Constraints from Gaia EDR3–based Orbits of Globular Clusters, Stellar Streams, and Satellite Galaxies , 2022, The Astrophysical Journal.

[6]  T. Beers,et al.  Dynamically Tagged Groups of Metal-poor Stars. II. The Radial Velocity Experiment Data Release 6 , 2022, The Astrophysical Journal Supplement Series.

[7]  A. Helmi,et al.  Substructure in the stellar halo near the Sun. I. Data-driven clustering in integrals-of-motion space , 2022, Astronomy & Astrophysics.

[8]  P. Cargile,et al.  Evidence from Disrupted Halo Dwarfs that r-process Enrichment via Neutron Star Mergers is Delayed by ≳500 Myr , 2021, The Astrophysical Journal Letters.

[9]  T. Beers,et al.  Metal-poor Stars Observed with the Southern African Large Telescope II. An Extended Sample , 2021, The Astrophysical Journal.

[10]  Rafael M. Santucci,et al.  Dynamically Tagged Groups of Metal-poor Stars from the Best and Brightest Survey , 2021, The Astrophysical Journal.

[11]  T. Beers,et al.  APOGEE Chemical Abundance Patterns of the Massive Milky Way Satellites , 2021, The Astrophysical Journal.

[12]  B. Schmidt,et al.  High-resolution spectroscopic follow-up of the most metal-poor candidates from SkyMapper DR1.1 , 2021, Monthly Notices of the Royal Astronomical Society.

[13]  B. Schmidt,et al.  r-Process elements from magnetorotational hypernovae , 2021, Nature.

[14]  R. Kotak,et al.  Gaia Early Data Release 3 , 2021, Astronomy & Astrophysics.

[15]  K. Schlaufman,et al.  The Age–Metallicity–Specific Orbital Energy Relation for the Milky Way’s Globular Cluster System Confirms the Importance of Accretion for Its Formation , 2021, The Astronomical Journal.

[16]  F. Hammer,et al.  Gaia EDR3 Proper Motions of Milky Way Dwarfs. I. 3D Motions and Orbits , 2021, The Astrophysical Journal.

[17]  Rafael M. Santucci,et al.  Targeting Bright Metal-poor Stars in the Disk and Halo Systems of the Galaxy , 2021, The Astrophysical Journal.

[18]  P. Cargile,et al.  Reconstructing the Last Major Merger of the Milky Way with the H3 Survey , 2021, The Astrophysical Journal.

[19]  H. Baumgardt,et al.  Gaia EDR3 view on galactic globular clusters , 2021, Monthly Notices of the Royal Astronomical Society.

[20]  T. Beers,et al.  The Parallax Zero-point of Gaia Early Data Release 3 from LAMOST Primary Red Clump Stars , 2021, 2101.09691.

[21]  A. Helmi,et al.  R-process enhancements of Gaia-Enceladus in GALAH DR3 , 2021, 2101.07791.

[22]  T. Beers,et al.  The R-Process Alliance: Chemodynamically Tagged Groups of Halo r-process-enhanced Stars Reveal a Shared Chemical-evolution History , 2020, The Astrophysical Journal.

[23]  Heidelberg,et al.  Estimating distances from parallaxes. V: Geometric and photogeometric distances to 1.47 billion stars in Gaia Early Data Release 3. , 2020, 2012.05220.

[24]  T. Beers,et al.  Two Populations of Carbon-enhanced Metal-poor Stars in the Disk System of the Milky Way , 2020, 2012.03463.

[25]  P. Jablonka,et al.  The Pristine survey – XII. Gemini-GRACES chemo-dynamical study of newly discovered extremely metal-poor stars in the Galaxy , 2020, 2012.03960.

[26]  A. McConnachie,et al.  Updated Proper Motions for Local Group Dwarf Galaxies Using Gaia Early Data Release 3 , 2020, Research Notes of the AAS.

[27]  P. J. Richards,et al.  Gaia Early Data Release 3 , 2020, Astronomy & Astrophysics.

[28]  Rafael M. Santucci,et al.  Dynamically Tagged Groups of Very Metal-poor Halo Stars from the HK and Hamburg/ESO Surveys , 2020, 2011.08305.

[29]  Jake T. Clark,et al.  The GALAH+ survey: Third data release , 2020, 2011.02505.

[30]  B. Schmidt,et al.  Exploring the Galaxy’s halo and very metal-weak thick disc with SkyMapper and Gaia DR2 , 2020, 2011.01189.

[31]  T. Beers,et al.  Metal-poor Stars Observed with the Southern African Large Telescope , 2020, The Astrophysical Journal.

[32]  T. Beers,et al.  Cosmological Insights into the Early Accretion of r-process-enhanced Stars. I. A Comprehensive Chemodynamical Analysis of LAMOST J1109+0754 , 2020, The Astrophysical Journal.

[33]  M. Schultheis,et al.  The chemodynamics of prograde and retrograde Milky Way stars , 2020, Astronomy & Astrophysics.

[34]  K. Venn,et al.  Chemo-dynamics of outer halo dwarf stars, including Gaia-Sausage and Gaia-Sequoia candidates , 2020 .

[35]  T. Beers,et al.  A Low-mass Stellar-debris Stream Associated with a Globular Cluster Pair in the Halo , 2020, The Astrophysical Journal.

[36]  T. Beers,et al.  Abundance Analysis of New r-process-enhanced Stars from the HESP–GOMPA Survey , 2020, The Astrophysical Journal.

[37]  B. Gibson,et al.  The R-Process Alliance: Fourth Data Release from the Search for R-process-enhanced Stars in the Galactic Halo , 2020, The Astrophysical Journal Supplement Series.

[38]  Benjamin D. Johnson,et al.  Evidence from the H3 Survey That the Stellar Halo Is Entirely Comprised of Substructure , 2020, The Astrophysical Journal.

[39]  T. Beers,et al.  The R-Process Alliance: A Very Metal-poor, Extremely r-process-enhanced Star with [Eu/Fe] = + 2.2, and the Class of r-III Stars , 2020, The Astrophysical Journal.

[40]  T. Beers,et al.  The R-process Alliance: First Magellan/MIKE Release from the Southern Search for R-Process-enhanced Stars , 2020, 2006.07731.

[41]  Rafael M. Santucci,et al.  The R-process Alliance: The Peculiar Chemical Abundance Pattern of RAVE J183013.5−455510 , 2020, The Astrophysical Journal.

[42]  H. Newberg,et al.  Two Substructures in the nearby Stellar Halo Found in Gaia and RAVE , 2020, The Astrophysical Journal.

[43]  P. T. de Zeeuw,et al.  Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole , 2020, Astronomy & Astrophysics.

[44]  P. Prugniel,et al.  NGC 6397: The metallicity trend along the isochrone revisited , 2020, Astronomy & Astrophysics.

[45]  A. Helmi Streams, Substructures, and the Early History of the Milky Way , 2020, Annual Review of Astronomy and Astrophysics.

[46]  E. Grebel,et al.  A high-precision abundance analysis of the nuclear benchmark star HD 20 , 2020, Astronomy & Astrophysics.

[47]  M. Reid,et al.  The Proper Motion of Sagittarius A*. III. The Case for a Supermassive Black Hole , 2020, The Astrophysical Journal.

[48]  T. Beers,et al.  A Blueprint for the Milky Way’s Stellar Populations: The Power of Large Photometric and Astrometric Surveys , 2019, The Astrophysical Journal.

[49]  Y. N. Liu,et al.  Multi-messenger Observations of a Binary Neutron Star Merger , 2019, Proceedings of Multifrequency Behaviour of High Energy Cosmic Sources - XIII — PoS(MULTIF2019).

[50]  T. Beers,et al.  Dynamical Relics of the Ancient Galactic Halo , 2019, The Astrophysical Journal.

[51]  V. Belokurov,et al.  The biggest splash , 2019, Monthly Notices of the Royal Astronomical Society.

[52]  J. Fynbo,et al.  Identification of strontium in the merger of two neutron stars , 2019, Nature.

[53]  A. Helmi,et al.  Multiple retrograde substructures in the Galactic halo: A shattered view of Galactic history , 2019, Astronomy & Astrophysics.

[54]  S. Martell,et al.  Identifying stellar streams in Gaia DR2 with data mining techniques , 2019, Monthly Notices of the Royal Astronomical Society.

[55]  V. Placco,et al.  Metal-poor Stars Observed with the Automated Planet Finder Telescope. II. Chemodynamical Analysis of Six Low-metallicity Stars in the Halo System of the Milky Way , 2019, The Astrophysical Journal.

[56]  A. Helmi,et al.  Origin of the system of globular clusters in the Milky Way , 2019, Astronomy & Astrophysics.

[57]  M. Ishigaki,et al.  Evidence for the accretion origin of halo stars with an extreme r-process enhancement , 2019, Nature Astronomy.

[58]  F. Anders,et al.  Photo-astrometric distances, extinctions, and astrophysical parameters for Gaia DR2 stars brighter than G = 18 , 2019, Astronomy & Astrophysics.

[59]  T. Beers,et al.  Evidence for the Third Stellar Population in the Milky Way’s Disk , 2019, The Astrophysical Journal.

[60]  B. Gibson,et al.  The R-Process Alliance: Discovery of a Low-α, r-process-enhanced Metal-poor Star in the Galactic Halo , 2019, The Astrophysical Journal.

[61]  Jun Yu Li,et al.  Revealing the Complicated Story of the Cetus Stream with StarGO , 2019, The Astrophysical Journal.

[62]  H. Newberg,et al.  The Substructures in the Local Stellar Halo from Gaia and LAMOST , 2019, The Astrophysical Journal.

[63]  M. Lehnert,et al.  The Milky Way has no in-situ halo other than the heated thick disc , 2018, Astronomy & Astrophysics.

[64]  A. Helmi,et al.  Characterization and history of the Helmi streams with Gaia DR2 , 2018, Astronomy & Astrophysics.

[65]  Rafael M. Santucci,et al.  The R-Process Alliance: Spectroscopic Follow-up of Low-metallicity Star Candidates from the Best & Brightest Survey , 2018, The Astrophysical Journal.

[66]  P. Jablonka,et al.  Tracing the formation of the Milky Way through ultra metal-poor stars , 2018, Monthly Notices of the Royal Astronomical Society.

[67]  C. Chiappini,et al.  Masses and ages for metal-poor stars , 2018, Astronomy & Astrophysics.

[68]  Kenneth C. Freeman,et al.  The R-Process Alliance: First Release from the Northern Search for r-process-enhanced Metal-poor Stars in the Galactic Halo , 2018, The Astrophysical Journal.

[69]  Monica Valluri,et al.  Kinematics of Highly r-process-enhanced Field Stars: Evidence for an Accretion Origin and Detection of Several Groups from Disrupted Satellites , 2018, The Astronomical Journal.

[70]  M. Lee,et al.  Discovery of Two New Globular Clusters in the Milky Way , 2018, The Astrophysical Journal.

[71]  C. Prieto,et al.  The origin of accreted stellar halo populations in the Milky Way using APOGEE,Gaia, and the EAGLE simulations , 2018, Monthly Notices of the Royal Astronomical Society.

[72]  T. Beers,et al.  The R-Process Alliance: Chemical Abundances for a Trio of r-process-enhanced Stars—One Strong, One Moderate, and One Mild , 2018, The Astrophysical Journal.

[73]  R. Wyse,et al.  The fastest travel together: chemical tagging of the fastest stars in Gaia DR2 to the stellar halo , 2018, Monthly Notices of the Royal Astronomical Society.

[74]  Anthony G. A. Brown,et al.  The merger that led to the formation of the Milky Way’s inner stellar halo and thick disk , 2018, Nature.

[75]  Sergey E. Koposov,et al.  Discovery of new retrograde substructures: the shards of ω Centauri? , 2018, Monthly Notices of the Royal Astronomical Society.

[76]  T. Beers,et al.  The R-Process Alliance: 2MASS J09544277+5246414, the Most Actinide-enhanced R-II Star Known , 2018, The Astrophysical Journal.

[77]  A. Helmi,et al.  One Large Blob and Many Streams Frosting the nearby Stellar Halo in Gaia DR2 , 2018, The Astrophysical Journal.

[78]  Anna Frebel,et al.  The R-process Alliance: First Release from the Southern Search for R-process-enhanced Stars in the Galactic Halo , 2018 .

[79]  E. Vasiliev AGAMA: action-based galaxy modelling architecture , 2018, Monthly Notices of the Royal Astronomical Society.

[80]  Sergey E. Koposov,et al.  The Milky Way Halo in Action Space , 2018, 1802.03351.

[81]  Sergey E. Koposov,et al.  Co-formation of the disc and the stellar halo , 2018, 1802.03414.

[82]  C. Ott,et al.  r-process Nucleosynthesis from Three-dimensional Magnetorotational Core-collapse Supernovae , 2017, The Astrophysical Journal.

[83]  Cambridge,et al.  Halo substructure in the SDSS--Gaia catalogue: streams and clumps , 2017, 1712.04071.

[84]  A. Frebel,et al.  JINAbase—A Database for Chemical Abundances of Metal-poor Stars , 2017, The Astrophysical Journal Supplement Series.

[85]  T. Beers,et al.  The role of binaries in the enrichment of the early Galactic halo , 2015, Astronomy & Astrophysics.

[86]  C. Prieto,et al.  Disentangling the Galactic Halo with APOGEE. I. Chemical and Kinematical Investigation of Distinct Metal-poor Populations , 2017, 1711.05781.

[87]  Mamoru Doi,et al.  Kilonova from post-merger ejecta as an optical and near-infrared counterpart of GW170817 , 2017, 1710.05850.

[88]  B. J. Shappee,et al.  Early spectra of the gravitational wave source GW170817: Evolution of a neutron star merger , 2017, Science.

[89]  J. Prieto,et al.  Light curves of the neutron star merger GW170817/SSS17a: Implications for r-process nucleosynthesis , 2017, Science.

[90]  F.-K. Thielemann,et al.  Neutron Star Mergers and Nucleosynthesis of Heavy Elements , 2017, 1710.02142.

[91]  T. Beers,et al.  RAVE J203843.2–002333: The First Highly R-process-enhanced Star Identified in the RAVE Survey , 2017, 1706.02934.

[92]  Cambridge,et al.  A halo substructure in Gaia Data Release 1 , 2017, 1704.01363.

[93]  P. McMillan,et al.  The mass distribution and gravitational potential of the Milky Way , 2016, 1608.00971.

[94]  W. Aoki,et al.  High-resolution spectroscopy of the extremely iron-poor post-AGB star CC Lyr , 2016, 1612.03669.

[95]  A. Helmi,et al.  A box full of chocolates: The rich structure of the nearby stellar halo revealed by Gaia and RAVE , 2016, 1611.00222.

[96]  V. Hill,et al.  The Hamburg/ESO R-process Enhanced Star survey (HERES) - XI. The highly r-process-enhanced star CS 29497-004 , 2016, 1608.07463.

[97]  B. Schmidt,et al.  The EMBLA survey – metal-poor stars in the Galactic bulge , 2016, 1604.07834.

[98]  K. Ulaczyk,et al.  Extremely metal-poor stars from the cosmic dawn in the bulge of the Milky Way , 2015, Nature.

[99]  S. Shectman,et al.  Nine new metal-poor stars on the subgiant and red horizontal branches with high levels of r-process enhancement , 2014, 1409.5810.

[100]  T. Beers,et al.  High-resolution abundance analysis of very metal-poor r-I stars , 2014, 1404.0234.

[101]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[102]  T. Beers,et al.  NEW HUBBLE SPACE TELESCOPE OBSERVATIONS OF HEAVY ELEMENTS IN FOUR METAL-POOR STARS , 2012, 1210.6387.

[103]  T. Beers,et al.  HIGH-RESOLUTION SPECTROSCOPY OF EXTREMELY METAL-POOR STARS FROM SDSS/SEGUE. I. ATMOSPHERIC PARAMETERS AND CHEMICAL COMPOSITIONS , 2012, 1210.1946.

[104]  B. Leibundgut,et al.  Silver and palladium help unveil the nature of a second r-process , 2012, 1205.4744.

[105]  C. Sneden,et al.  THE CHEMICAL COMPOSITIONS OF NON-VARIABLE RED AND BLUE FIELD HORIZONTAL BRANCH STARS , 2010, 1009.4461.

[106]  P. Bonifacio,et al.  Three carbon-enhanced metal-poor dwarf stars from the SDSS - Chemical abundances from CO5BOLD 3D hydrodynamical model atmospheres , 2010, 1002.1670.

[107]  W. Dehnen,et al.  Local kinematics and the local standard of rest , 2009, 0912.3693.

[108]  V. Hill,et al.  The Hamburg/ESO R-process enhanced star survey (HERES) IV. Detailed abundance analysis and age dating of the strongly r-process enhanced stars CS 29491-069 and HE 1219-0312 , 2009, 0910.0707.

[109]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[110]  J. Binney,et al.  Disassembling the Galaxy with angle-action coordinates , 2008, 0806.0319.

[111]  David K. Lai,et al.  Detailed Abundances for 28 Metal-poor Stars: Stellar Relics in the Milky Way , 2008, 0804.1370.

[112]  T. Beers,et al.  First stars VIII. Enrichment of the neutron-capture elements in the early Galaxy , 2007, 0709.3454.

[113]  T. Beers,et al.  Carbon-enhanced Metal-poor Stars. I. Chemical Compositions of 26 Stars , 2006, astro-ph/0609702.

[114]  K. Nomoto,et al.  Galactic Chemical Evolution: Carbon through Zinc , 2006, astro-ph/0608688.

[115]  S. Shectman,et al.  Atmospheres, Chemical Compositions, and Evolutionary Histories of Very Metal-Poor Red Horizontal-Branch Stars in the Galactic Field and in NGC 7078 (M15) , 2006 .

[116]  I. Ivans,et al.  Near-Ultraviolet Observations of HD 221170: New Insights into the Nature of r-Process-rich Stars , 2006, astro-ph/0604180.

[117]  F.-J. Zickgraf,et al.  The Hamburg/ESO R-process enhanced star survey (HERES). II. Spectroscopic analysis of the survey sample , 2005, astro-ph/0505050.

[118]  T. Beers,et al.  Spectroscopic Studies of Very Metal-poor Stars with the Subaru High Dispersion Spectrograph. III. Light Neutron-Capture Elements , 2005, astro-ph/0503032.

[119]  T. Beers,et al.  The Hamburg/ESO R-process Enhanced Star survey (HERES). I. Project description, and discovery of two stars with strong enhancements of neutron-capture elements , 2004, astro-ph/0408389.

[120]  G. Wasserburg,et al.  Abundances In Very Metal-Poor Dwarf Stars , 2004, astro-ph/0405286.

[121]  T. Beers,et al.  Spectroscopic Studies of Extremely Metal-Poor Stars with the Subaru High Dispersion Spectrograph. II. The r-Process Elements, Including Thorium , 2004, astro-ph/0402298.

[122]  J. Truran,et al.  Probing the Neutron‐Capture Nucleosynthesis History of Galactic Matter , 2002, astro-ph/0209308.

[123]  Jennifer A. Johnson Abundances of 30 Elements in 23 Metal-Poor Stars , 2001, astro-ph/0111181.

[124]  Amina Helmi,et al.  Mapping the substructure in the Galactic halo with the next generation of astrometric satellites , 2000, astro-ph/0007166.

[125]  J. Fulbright Abundances and Kinematics of Field Halo and Disk Stars. I. Observational Data and Abundance Analysis , 2000, astro-ph/0006260.

[126]  C. Sneden,et al.  Neutron-Capture Elements in the Early Galaxy: Insights from a Large Sample of Metal-poor Giants , 2000, astro-ph/0005188.

[127]  T. Beers,et al.  Kinematics of Metal-poor Stars in the Galaxy. III. Formation of the Stellar Halo and Thick Disk as Revealed from a Large Sample of Nonkinematically Selected Stars , 2000, astro-ph/0003087.

[128]  A. Helmi,et al.  Building up the stellar halo of the Galaxy , 1999, astro-ph/9901102.

[129]  Frank Exner,et al.  Advances in Knowledge Discovery and Data Mining, edited by Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padraic Smyth, and Ramasamy Uthurusamy , 1998, J. Am. Soc. Inf. Sci..

[130]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[131]  Y. Yoshii,et al.  Early Evolution of the Galactic Halo Revealed from Hipparcos Observations of Metal-poor Stars , 1997, astro-ph/9710151.

[132]  T. Beers,et al.  Extremely Metal-Poor Stars. II. Elemental Abundances and the Early Chemical Enrichment of The Galaxy , 1996 .

[133]  S. Woosley,et al.  The Evolution and Explosion of Massive Stars. II. Explosive Hydrodynamics and Nucleosynthesis , 1995 .

[134]  G. Preston,et al.  A Spectroscopic Analysis of 33 of the Most Metal-Poor Stars.I. , 1995 .

[135]  James R. Wilson,et al.  The r-process and neutrino-heated supernova ejecta , 1994 .

[136]  G. Preston,et al.  Ultrametal-poor halo stars: The remarkable spectrum of CS 22892-052 , 1994 .

[137]  T. Beers,et al.  Measures of location and scale for velocities in clusters of galaxies. A robust approach , 1990 .

[138]  J. Lattimer,et al.  Black-Hole-Neutron-Star Collisions , 1974 .

[139]  A. G. W. Cameron,et al.  NUCLEAR REACTIONS IN STARS AND NUCLEOGENESIS , 1957 .