Face Recognition with the Karhunen-Loeve Transform

Abstract : The major goal of this research was to investigate machine recognition of faces. The approach taken to achieve this goal was to investigate the use of Karhunen-Loe've Transform (KLT) by implementing flexible and practical code. The KLT utilizes the eigenvectors of the covariance matrix as a basis set. Faces were projected onto the eigenvectors, called eigenfaces, and the resulting projection coefficients were used as features. Face recognition accuracies for the KLT coefficients were superior to Fourier based techniques. Additionally, this thesis demonstrated the image compression and reconstruction capabilities of the KLT. This theses also developed the use of the KLT as a facial feature detector. The ability to differentiate between facial features provides a computer communications interface for non-vocal people with cerebral palsy. Lastly, this thesis developed a KLT based axis system for laser scanner data of human heads. The scanner data axis system provides the anthropometric community a more precise method of fitting custom helmets.