Effective Hypotheses Re-ranking Model in Statistical Machine Translation

In statistical machine translation, an effective way to improve the translation quality is to regularize the posterior probabilities of translation hypotheses according to the information of N-best list. In this paper, we present a novel approach to improve the final translation result by dynamically augmenting the translation scores of hypotheses that derived from the N-best translation candidates. The proposed model was trained on a general domain UM-Corpus and evaluated on IWSLT Chinese-English TED Talk data under the configurations of document level translation and sentence level translation respectively. Empirical results real that sentence level translation model outperforms the document level and the baseline system.

[1]  Ming Zhou,et al.  Mixture Model-based Minimum Bayes Risk Decoding using Multiple Machine Translation Systems , 2010, COLING.

[2]  Alexandre Allauzen,et al.  Assessing Phrase-Based Translation Models with Oracle Decoding , 2010, EMNLP.

[3]  Philipp Koehn,et al.  Moses: Open Source Toolkit for Statistical Machine Translation , 2007, ACL.

[4]  Andreas Stolcke,et al.  SRILM - an extensible language modeling toolkit , 2002, INTERSPEECH.

[5]  Ming Zhou,et al.  Hypothesis Mixture Decoding for Statistical Machine Translation , 2011, ACL.

[6]  Ming Zhou,et al.  Collaborative Decoding: Partial Hypothesis Re-ranking Using Translation Consensus between Decoders , 2009, ACL/IJCNLP.

[7]  Shankar Kumar,et al.  Efficient Minimum Error Rate Training and Minimum Bayes-Risk Decoding for Translation Hypergraphs and Lattices , 2009, ACL/IJCNLP.

[8]  Shankar Kumar,et al.  Minimum Bayes-Risk Decoding for Statistical Machine Translation , 2004, NAACL.

[9]  Shankar Kumar,et al.  Lattice Minimum Bayes-Risk Decoding for Statistical Machine Translation , 2008, EMNLP.

[10]  Gholamreza Haffari,et al.  Transductive learning for statistical machine translation , 2007, ACL.

[11]  Daniel Marcu,et al.  Scalable Inference and Training of Context-Rich Syntactic Translation Models , 2006, ACL.

[12]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[13]  Salim Roukos,et al.  Bleu: a Method for Automatic Evaluation of Machine Translation , 2002, ACL.

[14]  Haizhou Li,et al.  Exploiting N-best Hypotheses for SMT Self-Enhancement , 2008, ACL.

[15]  John DeNero,et al.  Model Combination for Machine Translation , 2010, HLT-NAACL.

[16]  David Chiang,et al.  A Hierarchical Phrase-Based Model for Statistical Machine Translation , 2005, ACL.

[17]  Liang Tian,et al.  UM-Corpus: A Large English-Chinese Parallel Corpus for Statistical Machine Translation , 2014, LREC.

[18]  Lidia S. Chao,et al.  CRFs-Based Chinese Word Segmentation for Micro-Blog with Small-Scale Data , 2012, CIPS-SIGHAN.

[19]  Hermann Ney,et al.  A Systematic Comparison of Various Statistical Alignment Models , 2003, CL.

[20]  Mauro Cettolo,et al.  WIT3: Web Inventory of Transcribed and Translated Talks , 2012, EAMT.

[21]  Franz Josef Och,et al.  Minimum Error Rate Training in Statistical Machine Translation , 2003, ACL.

[22]  Nello Cristianini,et al.  Learning to translate: a statistical and computational analysis , 2009, EAMT.

[23]  Fei Huang,et al.  Hierarchical System Combination for Machine Translation , 2007, EMNLP.

[24]  Richard M. Schwartz,et al.  Combining Outputs from Multiple Machine Translation Systems , 2007, NAACL.

[25]  Hermann Ney,et al.  The Alignment Template Approach to Statistical Machine Translation , 2004, CL.

[26]  François Yvon,et al.  Computing Lattice BLEU Oracle Scores for Machine Translation , 2012, EACL.

[27]  John DeNero,et al.  Fast Consensus Decoding over Translation Forests , 2009, ACL.

[28]  David Chiang,et al.  Learning to Translate with Source and Target Syntax , 2010, ACL.