Waveguided spoof surface plasmons with deep-subwavelength lateral confinement.

We present a new type of waveguide scheme for terahertz circuitry based on the concept of spoof surface plasmons. This structure is composed of a one-dimensional array of L-shaped metallic elements horizontally attached to a metal surface. The dispersion relation of the surface electromagnetic modes supported by this system presents a very weak dependence with the lateral dimension and the modes are very deep-subwavelength confined with a long-enough propagation length.

[1]  M. J. Lockyear,et al.  Microwave surface-plasmon-like modes on thin metamaterials. , 2009, Physical review letters.

[2]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[3]  P. Siegel Terahertz technology in biology and medicine , 2004, IEEE Transactions on Microwave Theory and Techniques.

[4]  Baojun Li,et al.  Ultracompact wavelength and polarization splitters in periodic dielectric waveguides. , 2008, Optics express.

[5]  H. Hübers Towards THz integrated photonics , 2010 .

[6]  J. Pendry,et al.  Mimicking Surface Plasmons with Structured Surfaces , 2004, Science.

[7]  L Martin-Moreno,et al.  Geometrically induced modification of surface plasmons in the optical and telecom regimes. , 2010, Optics letters.

[8]  J. Federici,et al.  Review of terahertz and subterahertz wireless communications , 2010 .

[9]  Esteban Moreno,et al.  Terahertz wedge plasmon polaritons. , 2009, Optics letters.

[10]  Linfang Shen,et al.  Wedge mode of spoof surface plasmon polaritons at terahertz frequencies , 2010 .

[11]  G. Park,et al.  Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit , 2009 .

[12]  Stefan A Maier,et al.  Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires. , 2006, Physical review letters.

[13]  Stafford Withington,et al.  Terahertz astronomical telescopes and instrumentation , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[14]  Daniel R. Grischkowsky,et al.  THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet , 2006 .

[15]  Daniel M. Mittleman,et al.  Metal wires for terahertz wave guiding , 2004, Nature.

[16]  O. Quevedo-Teruel,et al.  Planar Soft Surfaces and Their Application to Mutual Coupling Reduction , 2009, IEEE Transactions on Antennas and Propagation.

[17]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[18]  Subwavelength lateral confinement of microwave surface waves , 2011 .

[19]  Xicheng Zhang,et al.  Materials for terahertz science and technology , 2002, Nature materials.

[20]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[21]  J. Aizpurua,et al.  Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices. , 2008, Nano letters.

[22]  L Martin-Moreno,et al.  Domino plasmons for subwavelength terahertz circuitry. , 2009, Optics express.

[23]  R. J. Bell,et al.  Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. , 1983, Applied optics.

[24]  J. Pendry,et al.  Surfaces with holes in them: new plasmonic metamaterials , 2005 .

[25]  Omar M. Eldaiki,et al.  Deep subwavelength waveguiding and focusing based on designer surface plasmons. , 2010, Optics express.