Granular prototyping in fuzzy clustering

We introduce a logic-driven clustering in which prototypes are formed and evaluated in a sequential manner. The way of revealing a structure in data is realized by maximizing a certain performance index (objective function) that takes into consideration an overall level of matching (to be maximized) and a similarity level between the prototypes (the component to be minimized). The prototypes identified in the process come with the optimal weight vector that serves to indicate the significance of the individual features (coordinates) in the data grouping represented by the prototype. Since the topologies of these groupings are in general quite diverse the optimal weight vectors are reflecting the anisotropy of the feature space, i.e., they show some local ranking of features in the data space. Having found the prototypes we consider an inverse similarity problem and show how the relevance of the prototypes translates into their granularity.

[1]  David G. Stork,et al.  Pattern Classification , 1973 .

[2]  Andrzej Bargiela,et al.  Granular clustering: a granular signature of data , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[3]  Witold Pedrycz,et al.  Neurocomputations in Relational Systems , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  P. K. Simpson Fuzzy Min-Max Neural Networks-Part 1 : Classification , 1992 .

[5]  Vijay K. Rohatgi,et al.  Advances in Fuzzy Set Theory and Applications , 1980 .

[6]  Lotfi A. Zadeh,et al.  Fuzzy sets and information granularity , 1996 .

[7]  Patrick K. Simpson,et al.  Fuzzy min-max neural networks for function approximation , 1993, IEEE International Conference on Neural Networks.

[8]  J. C. Peters,et al.  Fuzzy Cluster Analysis : A New Method to Predict Future Cardiac Events in Patients With Positive Stress Tests , 1998 .

[9]  Witold Pedrycz,et al.  Fuzzy-set based models of neurons and knowledge-based networks , 1993, IEEE Trans. Fuzzy Syst..

[10]  Witold Pedrycz,et al.  Linguistic models and linguistic modeling , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[11]  W. Pedrycz,et al.  Fuzzy Relation Equations and Their Applications to Knowledge Engineering , 1989, Theory and Decision Library.

[12]  Bernadette Bouchon-Meunier,et al.  Towards general measures of comparison of objects , 1996, Fuzzy Sets Syst..

[13]  Lotfi A. Zadeh,et al.  Fuzzy logic = computing with words , 1996, IEEE Trans. Fuzzy Syst..

[14]  M. Delgado,et al.  A methodology to model fuzzy systems using fuzzy clustering in a rapid-prototyping approach , 1998, Fuzzy Sets Syst..

[15]  Lotfi A. Zadeh,et al.  Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic , 1997, Fuzzy Sets Syst..

[16]  Patrick K. Simpson,et al.  Fuzzy min-max neural networks. I. Classification , 1992, IEEE Trans. Neural Networks.

[17]  John Fulcher,et al.  Computational Intelligence: An Introduction , 2008, Computational Intelligence: A Compendium.

[18]  Andrzej Bargiela,et al.  General fuzzy min-max neural network for clustering and classification , 2000, IEEE Trans. Neural Networks Learn. Syst..

[19]  Kenneth G. Manton,et al.  Fuzzy Cluster Analysis , 2005 .

[20]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[21]  Andrzej Bargiela,et al.  Information granulation: a search for data structures , 2001 .

[22]  Witold Pedrycz,et al.  Direct and inverse problem in comparison of fuzzy data , 1990 .

[23]  Robert J. Hammell,et al.  Granularity and specificity in fuzzy function approximation , 1998, 1998 Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.98TH8353).

[24]  T. Sudkamp Similarity, interpolation, and fuzzy rule construction , 1993 .

[25]  Andrzej Bargiela,et al.  Data granulation through optimization of similarity measure , 2002 .

[26]  Hisao Ishibuchi,et al.  Selecting fuzzy if-then rules for classification problems using genetic algorithms , 1995, IEEE Trans. Fuzzy Syst..

[27]  Michael R. Anderberg,et al.  Cluster Analysis for Applications , 1973 .

[28]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[29]  Witold Pedrycz,et al.  Conditional fuzzy clustering in the design of radial basis function neural networks , 1998, IEEE Trans. Neural Networks.

[30]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[31]  A. Bargiela Interval and ellipsoidal uncertainty models , 2001 .

[32]  David G. Stork,et al.  Pattern classification, 2nd Edition , 2000 .

[33]  Andrzej Bargiela,et al.  A model of granular data: a design problem with the Tchebyschev FCM , 2005, Soft Comput..

[34]  A. Kandel Fuzzy Mathematical Techniques With Applications , 1986 .

[35]  Patrick K. Simpson,et al.  Fuzzy min-max neural networks - Part 2: Clustering , 1993, IEEE Trans. Fuzzy Syst..

[36]  Antonio F. Gómez-Skarmeta,et al.  A fuzzy clustering-based rapid prototyping for fuzzy rule-based modeling , 1997, IEEE Trans. Fuzzy Syst..