Ball Milling Produced FeF 3 ‐Containing Nanothermites: Investigations of Its Thermal and Inflaming Properties

[1]  I. Puri,et al.  Nanothermite colloids: A new prospective for enhanced performance , 2019, Defence Technology.

[2]  S. Bhattacharya,et al.  Performance characterization of Bi2O3/Al nanoenergetics blasted micro-forming system , 2019, Defence Technology.

[3]  E. Dreizin,et al.  Fluorine-containing oxidizers for metal fuels in energetic formulations , 2019, Defence Technology.

[4]  C. Rossi,et al.  Correlation between DNA Self-Assembly Kinetics, Microstructure, and Thermal Properties of Tunable Highly Energetic Al–CuO Nanocomposites for Micropyrotechnic Applications , 2018, ACS Applied Nano Materials.

[5]  C. Rossi Engineering of Al/CuO Reactive Multilayer Thin Films for Tunable Initiation and Actuation , 2018, Propellants, Explosives, Pyrotechnics.

[6]  T. Miyazaki,et al.  Optimization of adsorption isotherm types for desiccant air-conditioning applications , 2018, Renewable Energy.

[7]  Ludovic Salvagnac,et al.  Fast circuit breaker based on integration of Al/CuO nanothermites , 2018 .

[8]  E. Dreizin,et al.  Nanocomposite thermite powders with improved flowability prepared by mechanical milling , 2018 .

[9]  R. Khosroshahi,et al.  Microstructural characterization of ball-milled metal matrix nanocomposites (Cr, Ni, Ti)-25 wt% (Al2O3np, SiCnp) , 2018 .

[10]  Yanchun Li,et al.  Preparation and characterization of n-Al/FeF3 nanothermite , 2018 .

[11]  D. Spitzer,et al.  Insights into combustion mechanisms of variable aluminum-based iron oxide/-hydroxide nanothermites , 2017 .

[12]  D. Brabazon,et al.  Microstructure and morphological study of ball-milled metal matrix nanocomposites , 2017, Physics of Metals and Metallography.

[13]  P. Brousseau,et al.  Formation of Additive-Containing Nanothermites and Modifications to their Friction Sensitivity , 2017 .

[14]  Xueming Li,et al.  Fabrication of electrophoretically deposited, self-assembled three-dimensional porous Al/CuO nanothermite films for highly enhanced energy output , 2017 .

[15]  E. Dreizin,et al.  Metal-rich aluminum–polytetrafluoroethylene reactive composite powders prepared by mechanical milling at different temperatures , 2017, Journal of Materials Science.

[16]  Xinlu Cheng,et al.  Reaction characteristics and iron aluminides products analysis of planar interfacial Al/α-Fe2O3 nanolaminate , 2017 .

[17]  B. Veyssière,et al.  Comparison of Performance of Fast–reacting Nanothermites and Primary Explosives , 2017 .

[18]  Dong‐Won Kim,et al.  A facile synthesis and efficient thermal oxidation of polytetrafluoroethylene-coated aluminum powders , 2016 .

[19]  J. Maria,et al.  Probing the Reaction Dynamics of Thermite Nanolaminates , 2015 .

[20]  M. Zachariah,et al.  Persulfate salt as an oxidizer for biocidal energetic nano-thermites , 2015 .

[21]  Haiyang Wang,et al.  Assembly and reactive properties of Al/CuO based nanothermite microparticles , 2014 .

[22]  Lu Wang,et al.  Preparation and characterization of the AP/Al/Fe2O3 ternary nano-thermites , 2014, Journal of Thermal Analysis and Calorimetry.

[23]  C. Rossi Two Decades of Research on Nano‐Energetic Materials , 2014 .

[24]  Dana D. Dlott,et al.  Ignition of Nanocomposite Thermites by Electric Spark and Shock Wave , 2014 .

[25]  S. Bhoraskar,et al.  Synthesis, characterization and catalytic activity of Al/Fe2O3 nanothermite , 2014, Journal of Thermal Analysis and Calorimetry.

[26]  M. Zachariah,et al.  Super-reactive nanoenergetic gas generators based on periodate salts. , 2013, Angewandte Chemie.

[27]  R. Naik,et al.  Biologically tunable reactivity of energetic nanomaterials using protein cages. , 2013, Nano letters.

[28]  S. Son,et al.  Altering Reactivity of Aluminum with Selective Inclusion of Polytetrafluoroethylene through Mechanical Activation , 2013 .

[29]  Jason A. Thomas,et al.  Significantly enhanced energy output from 3D ordered macroporous structured Fe2O3/Al nanothermite film. , 2013, ACS applied materials & interfaces.

[30]  Fuguo Li,et al.  Severe Plastic Deformation Techniques for Bulk Ultrafine-grained Materials , 2012 .

[31]  Carole Rossi,et al.  High‐Energy Al/CuO Nanocomposites Obtained by DNA‐Directed Assembly , 2012 .

[32]  E. Dreizin,et al.  Low-temperature exothermic reactions in fully dense Al–CuO nanocomposite powders , 2012 .

[33]  K. Fezzaa,et al.  Reactive sintering: An important component in the combustion of nanocomposite thermites , 2012 .

[34]  M. Zachariah,et al.  Time-Resolved Mass Spectrometry of the Exothermic Reaction between Nanoaluminum and Metal Oxides: The Role of Oxygen Release , 2010 .

[35]  M. Zachariah,et al.  Diffusive vs Explosive Reaction at the Nanoscale , 2010 .

[36]  E. Dreizin,et al.  Nanocomposite thermite powders prepared by cryomilling , 2009 .

[37]  A. Gash,et al.  Tantalum–tungsten oxide thermite composites prepared by sol–gel synthesis and spark plasma sintering , 2009 .

[38]  M. Zachariah,et al.  Enhancing the Rate of Energy Release from NanoEnergetic Materials by Electrostatically Enhanced Assembly , 2004 .

[39]  J. A. Martin,et al.  Oxidation behavior of aluminum nanopowders , 1995 .