Forecasting tourism demand: Developing a general nesting spatiotemporal model

Abstract This study proposes a general nesting spatiotemporal (GNST) model in an effort to improve the accuracy of tourism demand forecasts. The proposed GNST model extends the general nesting spatial (GNS) model into a spatiotemporal form to account for the spatial and temporal effects of endogenous and exogenous variables as well as unobserved factors. As a general specification of spatiotemporal models, the proposed model provides high flexibility in modelling tourism demand. Based on a panel dataset containing quarterly inbound visitor arrivals to 26 European destinations, this empirical study demonstrates that the GNST model outperforms both its non-spatial counterparts and spatiotemporal benchmark models. This finding confirms that spatial and temporal exogenous interaction effects contribute to improved forecasting performance.

[1]  C. Witt,et al.  Forecasting tourism demand: A review of empirical research , 1995 .

[2]  Haiyan Song,et al.  Forecasting tourism recovery amid COVID-19 , 2021, Annals of Tourism Research.

[3]  Haiyan Song,et al.  Impacts of the Financial and Economic Crisis on Tourism in Asia , 2010 .

[4]  Sergio J. Rey,et al.  US Regional Income Convergence: A Spatial Econometric Perspective , 1999 .

[5]  Yu Zheng,et al.  Deep Spatio-Temporal Residual Networks for Citywide Crowd Flows Prediction , 2016, AAAI.

[6]  Haiyan Song,et al.  Tourism demand modelling and forecasting—A review of recent research , 2008 .

[7]  Yang Yang,et al.  Spatial effects in regional tourism growth , 2014 .

[8]  Peter Fuleky,et al.  Forecasting in a Mixed Up World: Nowcasting Hawaii Tourism , 2017 .

[9]  C. Manski Identification of Endogenous Social Effects: The Reflection Problem , 1993 .

[10]  Haiyan Song,et al.  A review of research on tourism demand forecasting: Launching the Annals of Tourism Research Curated Collection on tourism demand forecasting , 2019, Annals of Tourism Research.

[11]  Kwok-Leung Tsui,et al.  Forecasting tourist arrivals with machine learning and internet search index , 2019 .

[12]  Haiyan Song,et al.  An empirical study of outbound tourism demand in the UK , 2000 .

[13]  Gang Li,et al.  Forecasting tourist arrivals using time-varying parameter structural time series models , 2011 .

[14]  G. Bernât,et al.  DOES MANUFACUTRING MATTER? A SPATIAL ECONOMETRIC VIEW OF KALDOR'S LAWS* , 2006 .

[15]  J. Paul Elhorst,et al.  Spatial Panel Data Analysis , 2017, Encyclopedia of GIS.

[16]  J. Paul Elhorst,et al.  Dynamic spatial panels: models, methods, and inferences , 2012, J. Geogr. Syst..

[17]  Yang Yang,et al.  Spatial-temporal forecasting of tourism demand , 2019, Annals of Tourism Research.

[18]  Irem Önder,et al.  Forecasting city arrivals with Google Analytics , 2016 .

[19]  Haiyan Song,et al.  Modelling and forecasting the demand for Hong Kong tourism , 2003 .

[20]  Rob J. Hyndman,et al.  Another Look at Forecast Accuracy Metrics for Intermittent Demand , 2006 .

[21]  Jason Li Chen,et al.  Tourism forecasting: A review of methodological developments over the last decade , 2018, Tourism Economics.

[22]  S. F. Witt,et al.  Forecasting the Demand for International Business Tourism , 2003 .

[23]  Mike G. Tsionas,et al.  Modeling and Forecasting Regional Tourism Demand Using the Bayesian Global Vector Autoregressive (BGVAR) Model , 2019 .

[24]  P. Burridge,et al.  Testing for a Common Factor in a Spatial Autoregression Model , 1981 .

[25]  Justyna Majewska Inter-regional agglomeration effects in tourism in Poland , 2015 .

[26]  Gang Li,et al.  Forecasting international tourism demand: a local spatiotemporal model , 2020 .

[27]  Bing Pan,et al.  Forecasting Destination Weekly Hotel Occupancy with Big Data , 2017 .

[28]  Gang Li,et al.  Modelling the interdependence of tourism demand: The global vector autoregressive approach , 2017 .

[29]  J. LeSage Introduction to spatial econometrics , 2009 .

[30]  Boriss Siliverstovs,et al.  A Dynamic Panel Data Approach to the Forecasting of the GDP of German Länder , 2008 .

[31]  Vera Shanshan Lin,et al.  Modeling and Forecasting Chinese Outbound Tourism: An Econometric Approach , 2015 .

[32]  Haiyan Song,et al.  Pooling in Tourism Demand Forecasting , 2018, Journal of Travel Research.

[33]  Haiyan Song,et al.  Bayesian models for tourism demand forecasting. , 2006 .

[34]  Allan M. Williams,et al.  Spatial spillovers of agglomeration economies and productivity in the tourism industry: The case of the UK , 2021 .

[35]  Haiyan Song,et al.  New developments in tourism and hotel demand modeling and forecasting , 2017 .

[36]  Haiyan Song,et al.  Recent Developments in Econometric Modeling and Forecasting , 2005 .

[37]  Haiyan Song,et al.  A meta-analysis of international tourism demand forecasting and implications for practice , 2014 .

[38]  Katharina Pijnenburg,et al.  Do Regions with Entrepreneurial Neighbours Perform Better? A Spatial Econometric Approach for German Regions , 2014 .

[39]  Bing Pan,et al.  Forecasting hotel room demand using search engine data. , 2012 .

[40]  Wonho Song,et al.  Short-term forecasting of Japanese tourist inflow to South Korea using Google trends data , 2017 .

[41]  Dimitrios Buhalis,et al.  Forecasting tourist arrivals at attractions: Search engine empowered methodologies , 2018, Tourism Economics.

[42]  Lung-fei Lee,et al.  Bayesian estimation and model selection for spatial Durbin error model with finite distributed lags , 2013 .

[43]  Rafael Boix,et al.  Sources of growth and competitiveness of local tourist production systems: an application to Italy (1991–2001) , 2008 .

[44]  Jan Schnellenbach,et al.  What do we know about geographical knowledge spillovers and regional growth?: A survey of the literature , 2006 .

[45]  Bing Pan,et al.  Predicting Hotel Demand Using Destination Marketing Organization’s Web Traffic Data , 2014 .

[46]  Forecasting tourism arrivals with an online search engine data: A study of the Balearic Islands , 2017 .

[47]  Jesús Mur,et al.  The Spatial Durbin Model and the Common Factor Tests , 2006 .

[48]  Gang Li,et al.  Forecasting Seasonal Tourism Demand Using a Multiseries Structural Time Series Method , 2019 .

[49]  Haiyan Song,et al.  Forecasting international tourist flows to Macau , 2006 .

[50]  Hengyun Li,et al.  Tourism and regional income inequality: Evidence from China , 2016 .

[51]  S. Freire,et al.  Analysing spatiotemporal patterns of tourism in Europe at high-resolution with conventional and big data sources , 2018, Tourism Management.

[52]  Stephen F. Witt,et al.  Forecasting Tourism Using Univariate and Multivariate Structural Time Series Models , 2001 .

[53]  A. Gilbey,et al.  Forecasting of Hong Kong airport's passenger throughput , 2014 .

[54]  Bernard Fingleton,et al.  Empirical growth models with spatial effects , 2006 .

[55]  Badi H. Baltagi,et al.  Testing Panel Data Regression Models with Spatial Error Correlation , 2002 .

[56]  F. Diebold,et al.  Comparing Predictive Accuracy , 1994, Business Cycles.

[57]  Lung-fei Lee,et al.  Estimation of spatial autoregressive panel data models with fixed effects , 2010 .

[58]  Robert Fildes,et al.  Evaluating the forecasting performance of econometric models of air passenger traffic flows using multiple error measures , 2011 .

[59]  Prosper F. Bangwayo-Skeete,et al.  Can Google data improve the forecasting performance of tourist arrivals? Mixed-data sampling approach , 2015 .

[60]  Haiyan Song,et al.  Scenario Forecasting for Global Tourism , 2020, Journal of Hospitality & Tourism Research.

[61]  Chang Liu,et al.  Forecasting Tourism Demand with an Improved Mixed Data Sampling Model , 2020 .

[62]  Gang Li,et al.  Forecasting tourism demand with multisource big data , 2020 .

[63]  Kevin K. F. Wong,et al.  A Spatial Econometric Approach to Model Spillover Effects in Tourism Flows , 2012 .