Log-convexity of Aigner–Catalan–Riordan numbers
暂无分享,去创建一个
[1] Francesco Brenti,et al. The Applications of Total Positivity to Combinatorics, and Conversely , 1996 .
[2] Yeong-Nan Yeh,et al. Polynomials with real zeros and Po'lya frequency sequences , 2005, J. Comb. Theory, Ser. A.
[3] Renzo Sprugnoli,et al. On Some Alternative Characterizations of Riordan Arrays , 1997, Canadian Journal of Mathematics.
[4] R. Stanley. Log‐Concave and Unimodal Sequences in Algebra, Combinatorics, and Geometry a , 1989 .
[5] Renzo Sprugnoli,et al. Riordan arrays and combinatorial sums , 1994, Discret. Math..
[6] Louis W. Shapiro,et al. The Riordan group , 1991, Discret. Appl. Math..
[7] M. Aigner. Catalan and other numbers: a recurrent theme , 2001 .
[8] Li Liu,et al. On the log-convexity of combinatorial sequences , 2007, Adv. Appl. Math..
[9] Bao-Xuan Zhu,et al. Log-convexity and strong q-log-convexity for some triangular arrays , 2013, Adv. Appl. Math..
[10] M. Aigner,et al. Motzkin Numbers , 1998, Eur. J. Comb..
[11] Martin Aigner,et al. Catalan-like Numbers and Determinants , 1999, J. Comb. Theory, Ser. A.
[12] Hana Kim,et al. Combinatorics of Riordan arrays with identical A and Z sequences , 2012, Discret. Math..
[13] Yi Wang,et al. On Unimodality Problems in Pascal's Triangle , 2008, Electron. J. Comb..
[14] Martin Aigner,et al. Enumeration via ballot numbers , 2008, Discret. Math..
[15] D. G. Rogers,et al. Pascal triangles, Catalan numbers and renewal arrays , 1978, Discret. Math..
[16] Yeong-Nan Yeh,et al. Log-concavity and LC-positivity , 2007, J. Comb. Theory, Ser. A.
[17] F. Brenti,et al. Unimodal, log-concave and Pólya frequency sequences in combinatorics , 1989 .
[18] Renzo Sprugnoli,et al. Sequence characterization of Riordan arrays , 2009, Discret. Math..
[19] Tian-Xiao He,et al. Parametric Catalan Numbers and Catalan Triangles , 2013 .
[20] Renzo Sprugnoli,et al. Combinatorial sums through Riordan arrays , 2011 .
[21] Hua Sun,et al. A Combinatorial Proof of the Log-Convexity of Catalan-Like Numbers , 2014, J. Integer Seq..
[22] Yi Wang,et al. A unified approach to polynomial sequences with only real zeros , 2005, Adv. Appl. Math..
[23] Francesco Brenti,et al. Combinatorics and Total Positivity , 1995, J. Comb. Theory A.