Log-convexity of Aigner–Catalan–Riordan numbers

Abstract Let T = [ t n , k ] n , k ≥ 0 be an infinite lower triangular matrix defined by t 0 , 0 = 1 , t n + 1 , 0 = ∑ j = 0 n z j t n , j , t n + 1 , k + 1 = ∑ j = k n a j , k t n , j for n , k ≥ 0 , where all z j , a j , k are nonnegative and a j , k = 0 unless j ≥ k ≥ 0 . We show that the sequence ( t n , 0 ) n ≥ 0 is log-convex if the coefficient matrix [ ζ , A ] is TP 2 , where ζ = [ z 0 , z 1 , z 2 , … ] ′ and A = [ a i , j ] i , j ≥ 0 . This gives a unified proof of the log-convexity of many well-known combinatorial sequences, including the Catalan numbers, the Motzkin numbers, the central binomial coefficients, the Schroder numbers, the Bell numbers, and so on.

[1]  Francesco Brenti,et al.  The Applications of Total Positivity to Combinatorics, and Conversely , 1996 .

[2]  Yeong-Nan Yeh,et al.  Polynomials with real zeros and Po'lya frequency sequences , 2005, J. Comb. Theory, Ser. A.

[3]  Renzo Sprugnoli,et al.  On Some Alternative Characterizations of Riordan Arrays , 1997, Canadian Journal of Mathematics.

[4]  R. Stanley Log‐Concave and Unimodal Sequences in Algebra, Combinatorics, and Geometry a , 1989 .

[5]  Renzo Sprugnoli,et al.  Riordan arrays and combinatorial sums , 1994, Discret. Math..

[6]  Louis W. Shapiro,et al.  The Riordan group , 1991, Discret. Appl. Math..

[7]  M. Aigner Catalan and other numbers: a recurrent theme , 2001 .

[8]  Li Liu,et al.  On the log-convexity of combinatorial sequences , 2007, Adv. Appl. Math..

[9]  Bao-Xuan Zhu,et al.  Log-convexity and strong q-log-convexity for some triangular arrays , 2013, Adv. Appl. Math..

[10]  M. Aigner,et al.  Motzkin Numbers , 1998, Eur. J. Comb..

[11]  Martin Aigner,et al.  Catalan-like Numbers and Determinants , 1999, J. Comb. Theory, Ser. A.

[12]  Hana Kim,et al.  Combinatorics of Riordan arrays with identical A and Z sequences , 2012, Discret. Math..

[13]  Yi Wang,et al.  On Unimodality Problems in Pascal's Triangle , 2008, Electron. J. Comb..

[14]  Martin Aigner,et al.  Enumeration via ballot numbers , 2008, Discret. Math..

[15]  D. G. Rogers,et al.  Pascal triangles, Catalan numbers and renewal arrays , 1978, Discret. Math..

[16]  Yeong-Nan Yeh,et al.  Log-concavity and LC-positivity , 2007, J. Comb. Theory, Ser. A.

[17]  F. Brenti,et al.  Unimodal, log-concave and Pólya frequency sequences in combinatorics , 1989 .

[18]  Renzo Sprugnoli,et al.  Sequence characterization of Riordan arrays , 2009, Discret. Math..

[19]  Tian-Xiao He,et al.  Parametric Catalan Numbers and Catalan Triangles , 2013 .

[20]  Renzo Sprugnoli,et al.  Combinatorial sums through Riordan arrays , 2011 .

[21]  Hua Sun,et al.  A Combinatorial Proof of the Log-Convexity of Catalan-Like Numbers , 2014, J. Integer Seq..

[22]  Yi Wang,et al.  A unified approach to polynomial sequences with only real zeros , 2005, Adv. Appl. Math..

[23]  Francesco Brenti,et al.  Combinatorics and Total Positivity , 1995, J. Comb. Theory A.