Complexity of Polytope Volume Computation

We survey some recent results on the complexity of computing the vol­ume of convex n-dimensional polytopes.

[1]  Michael L. Fredman,et al.  How Good is the Information Theory Bound in Sorting? , 1976, Theor. Comput. Sci..

[2]  Michael E. Saks,et al.  Every poset has a good comparison , 1984, STOC '84.

[3]  Zoltán Füredi,et al.  Computing the volume is difficult , 1986, STOC '86.

[4]  N. Linial Hard enumeration problems in geometry and combinatorics , 1986 .

[5]  György Elekes,et al.  A geometric inequality and the complexity of computing volume , 1986, Discret. Comput. Geom..

[6]  Richard P. Stanley,et al.  Two poset polytopes , 1986, Discret. Comput. Geom..

[7]  Mark Jerrum,et al.  Approximate Counting, Uniform Generation and Rapidly Mixing Markov Chains , 1987, International Workshop on Graph-Theoretic Concepts in Computer Science.

[8]  Miklós Simonovits,et al.  The mixing rate of Markov chains, an isoperimetric inequality, and computing the volume , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[9]  J. Lawrence Polytope volume computation , 1991 .

[10]  Peter Winkler,et al.  Counting linear extensions is #P-complete , 1991, STOC '91.

[11]  L. Khachiyan,et al.  On the conductance of order Markov chains , 1991 .

[12]  Miklós Simonovits,et al.  Random Walks in a Convex Body and an Improved Volume Algorithm , 1993, Random Struct. Algorithms.