Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation

[1]  E. O’Shea,et al.  Quantification of protein half-lives in the budding yeast proteome , 2006, Proceedings of the National Academy of Sciences.

[2]  James P. Reilly,et al.  A computational approach toward label-free protein quantification using predicted peptide detectability , 2006, ISMB.

[3]  J. Derisi,et al.  Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise , 2006, Nature.

[4]  S. Hanash,et al.  Challenges in deriving high-confidence protein identifications from data gathered by a HUPO plasma proteome collaborative study , 2006, Nature Biotechnology.

[5]  M. Mann,et al.  Exponentially Modified Protein Abundance Index (emPAI) for Estimation of Absolute Protein Amount in Proteomics by the Number of Sequenced Peptides per Protein*S , 2005, Molecular & Cellular Proteomics.

[6]  Gordon Broderick,et al.  Localization, Annotation, and Comparison of the Escherichia coli K-12 Proteome under Two States of Growth*S , 2005, Molecular & Cellular Proteomics.

[7]  Mark S Friedrichs,et al.  Guidelines for the Routine Application of the Peptide Hits Technique , 2005, Journal of the American Society for Mass Spectrometry.

[8]  Robertson Craig,et al.  The use of proteotypic peptide libraries for protein identification. , 2005, Rapid communications in mass spectrometry : RCM.

[9]  R. Aebersold,et al.  Scoring proteomes with proteotypic peptide probes , 2005, Nature Reviews Molecular Cell Biology.

[10]  Yves Moreau,et al.  Benchmarking the CATMA Microarray. A Novel Tool forArabidopsis Transcriptome Analysis1[w] , 2005, Plant Physiology.

[11]  Andreas Beyer,et al.  Post-transcriptional Expression Regulation in the Yeast Saccharomyces cerevisiae on a Genomic Scale*S , 2004, Molecular & Cellular Proteomics.

[12]  Luc Negroni,et al.  Assessing factors for reliable quantitative proteomics based on two‐dimensional gel electrophoresis , 2004, Proteomics.

[13]  J. Yates,et al.  A model for random sampling and estimation of relative protein abundance in shotgun proteomics. , 2004, Analytical chemistry.

[14]  Markus J. Herrgård,et al.  Integrating high-throughput and computational data elucidates bacterial networks , 2004, Nature.

[15]  Rong Wang,et al.  The need for a public proteomics repository , 2004, Nature Biotechnology.

[16]  Jeremy D. Glasner,et al.  Genome-Scale Analysis of the Uses of the Escherichia coli Genome: Model-Driven Analysis of Heterogeneous Data Sets , 2003, Journal of bacteriology.

[17]  E. O’Shea,et al.  Global analysis of protein expression in yeast , 2003, Nature.

[18]  M. Gerstein,et al.  Comparing protein abundance and mRNA expression levels on a genomic scale , 2003, Genome Biology.

[19]  Michael I. Jordan,et al.  Toward a protein profile of Escherichia coli: Comparison to its transcription profile , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[20]  R. Aebersold,et al.  A statistical model for identifying proteins by tandem mass spectrometry. , 2003, Analytical chemistry.

[21]  S. Gygi,et al.  Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[22]  John D. Storey,et al.  Genome-wide analysis of mRNA translation profiles in Saccharomyces cerevisiae , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[23]  E. Winzeler,et al.  Protein pathway and complex clustering of correlated mRNA and protein expression analyses in Saccharomyces cerevisiae , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Mark D. Robinson,et al.  FunSpec: a web-based cluster interpreter for yeast , 2002, BMC Bioinformatics.

[25]  Hanno Steen,et al.  Proteomics goes quantitative: measuring protein abundance. , 2002, Trends in biotechnology.

[26]  R. Aebersold,et al.  Approaching complete peroxisome characterization by gas‐phase fractionation , 2002, Electrophoresis.

[27]  M. Mann,et al.  Large-scale Proteomic Analysis of the Human Spliceosome References , 2006 .

[28]  M. Mann,et al.  Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics* , 2002, Molecular & Cellular Proteomics.

[29]  John D. Storey,et al.  Precision and functional specificity in mRNA decay , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[30]  L. Hood,et al.  Complementary Profiling of Gene Expression at the Transcriptome and Proteome Levels in Saccharomyces cerevisiae*S , 2002, Molecular & Cellular Proteomics.

[31]  M. Marton,et al.  Transcriptional Profiling Shows that Gcn4p Is a Master Regulator of Gene Expression during Amino Acid Starvation in Yeast , 2001, Molecular and Cellular Biology.

[32]  J. Yates,et al.  Large-scale analysis of the yeast proteome by multidimensional protein identification technology , 2001, Nature Biotechnology.

[33]  K. M. Dombek,et al.  Post-translational Regulation of Adr1 Activity Is Mediated by Its DNA Binding Domain* , 1999, The Journal of Biological Chemistry.

[34]  B. Futcher,et al.  A Sampling of the Yeast Proteome , 1999, Molecular and Cellular Biology.

[35]  S. Gygi,et al.  Quantitative analysis of complex protein mixtures using isotope-coded affinity tags , 1999, Nature Biotechnology.

[36]  F. Cross,et al.  Accurate quantitation of protein expression and site-specific phosphorylation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[37]  M. G. Koerkamp,et al.  Dynamics of gene expression revealed by comparison of serial analysis of gene expression transcript profiles from yeast grown on two different carbon sources. , 1999, Molecular biology of the cell.

[38]  Michael R. Green,et al.  Dissecting the Regulatory Circuitry of a Eukaryotic Genome , 1998, Cell.

[39]  Wei Zhou,et al.  Characterization of the Yeast Transcriptome , 1997, Cell.

[40]  S. Holmberg,et al.  Regulation of isoleucine-valine biosynthesis in Saccharomyces cerevisiae , 1988, Current Genetics.

[41]  F. Messenguy,et al.  The leader peptide of yeast gene CPA1 is essential for the translational repression of its expression , 1987, Cell.

[42]  F. Neidhardt,et al.  Escherichia Coli and Salmonella: Typhimurium Cellular and Molecular Biology , 1987 .

[43]  S. Holmberg,et al.  The ILV5 gene of Saccharomyces cerevisiae is highly expressed. , 1986, Nucleic acids research.

[44]  S. Rogers,et al.  Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. , 1986, Science.

[45]  A. Varshavsky,et al.  In vivo half-life of a protein is a function of its amino-terminal residue. , 1986, Science.

[46]  J R Yates,et al.  Protein sequencing by tandem mass spectrometry. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[47]  J. Buhler,et al.  Elongation factor 1 alpha from Saccharomyces cerevisiae. Rapid large-scale purification and molecular characterization. , 1985, The Journal of biological chemistry.

[48]  R. Doolittle,et al.  A simple method for displaying the hydropathic character of a protein. , 1982, Journal of molecular biology.

[49]  K. Hossner,et al.  Cellular and molecular biology. , 2005 .

[50]  Joshua E. Elias,et al.  Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. , 2003, Journal of proteome research.