A model for cerebral cortical neuron group electric activity and its implications for cerebral function

The electroencephalogram, or EEG, is a recording of the field potential generated by the electric activity of neuronal populations of the brain. Its utility has long been recognized as a monitor which reflects the vigilance states of the brain, such as arousal, drowsiness, and sleep stages. Moreover, it is used to detect pathological conditions such as seizures, to calibrate drug action during anesthesia, and to understand cognitive task signatures in healthy and abnormal subjects. Being an aggregate measure of neural activity, understanding the neural origins of EEG oscillations has been limited. With the advent of recording techniques, however, and as an influx of experimental evidence on cellular and network properties of the neocortex has become available, a closer look into the neuronal mechanisms for EEG generation is warranted. Accordingly, we introduce an effective neuronal skeleton circuit at a neuronal group level which could reproduce basic EEG-observable slow (< 15 Hz) oscillatory phenomenon. The circuit incorporates basic laminar organization principles of the cortex. Interaction between neuronal groups is defined on three scales, namely the columnar (0.3mm), columnar assembly (1-2mm) and areal (> 3mm). The effective circuit makes use of the dynamic properties of the layer 5 network to explain intra-cortically generated augmenting responses, restful alpha, slow wave (< 1Hz) oscillations, and disinhibition-induced seizures. Based on recent cellular evidence, we propose a hierarchical binding mechanism in tufted layer 5 cells which acts as a controlled gate between local cortical activity and inputs arriving from distant cortical areas. This gate is manifested by the switch in output firing patterns in tufted layer 5 cells between burst firing and regular spiking, with specific implications on local functional connectivity. This hypothesized mechanism provides an explanation of different alpha band (10Hz) oscillations observed recently under cognitive states. In particular, evoked alpha rhythms, which occur transiently after an input stimulus, could account for initial reogranization of local neural activity based on (mis)match between driving inputs and modulatory feedback of higher order cortical structures, or internal expectations. Emitted alpha rhythms, on the other hand, is an example of extreme attention where dominance of higher order control inputs could drive reorganization of local cortical activity. Finally, the model makes predictions on the role of burst firing patterns in tufted layer 5 cells in redefining local cortical dynamics, based on internal representations, as a prelude to high frequency oscillations observed in various sensory systems during cognition. Thesis Supervisor: Munther A. Dahleh Title: Professor Thesis Supervisor: Steve G. Massaquoi Title: Assistant Professor Thesis Reader: Emery N. Brown Title: Associate Professor, Harvard Medical School-HST

[1]  György Buzsáki,et al.  Cortical Pyramidal Cells of the Awake Rat Somadendritic Backpropagation of Action Potentials in , 1998 .

[2]  Alexander M Binshtok,et al.  Functionally Distinct NMDA Receptors Mediate Horizontal Connectivity within Layer 4 of Mouse Barrel Cortex , 1998, Neuron.

[3]  W. Singer Consciousness and the Binding Problem , 2001, Annals of the New York Academy of Sciences.

[4]  B. Sakmann,et al.  Developmental Switch in the Short-Term Modification of Unitary EPSPs Evoked in Layer 2/3 and Layer 5 Pyramidal Neurons of Rat Neocortex , 1999, The Journal of Neuroscience.

[5]  W. Freeman Simulation of chaotic EEG patterns with a dynamic model of the olfactory system , 1987, Biological Cybernetics.

[6]  A. Burkhalter,et al.  Connectivity of GABAergic calretinin-immunoreactive neurons in rat primary visual cortex. , 1999, Cerebral cortex.

[7]  A. N. van den Pol,et al.  Excitatory Actions of GABA after Neuronal Trauma , 1996, The Journal of Neuroscience.

[8]  Munther A. Dahleh,et al.  Automated classification of EEG signals in brain tumor diagnostics , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[9]  Steven J. Schiff,et al.  Wavelet transforms for epileptic spike and seizure detection , 1994, Proceedings of 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[10]  E. G. Jones,et al.  Microcolumns in the cerebral cortex. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[11]  R. Kötter,et al.  Layer-Specific Intracolumnar and Transcolumnar Functional Connectivity of Layer V Pyramidal Cells in Rat Barrel Cortex , 2001, The Journal of Neuroscience.

[12]  D. Jaffe,et al.  Dopamine Decreases the Excitability of Layer V Pyramidal Cells in the Rat Prefrontal Cortex , 1998, The Journal of Neuroscience.

[13]  P. Somogyi,et al.  Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons , 2000, Nature Neuroscience.

[14]  L. Benardo,et al.  Restrictions on inhibitory circuits contribute to limited recruitment of fast inhibition in rat neocortical pyramidal cells. , 1999, Journal of neurophysiology.

[15]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[16]  Moshe Abeles,et al.  Corticonics: Neural Circuits of Cerebral Cortex , 1991 .

[17]  J. Deuchars,et al.  Innervation of burst firing spiny interneurons by pyramidal cells in deep layers of rat somatomotor cortex: Paired intracellular recordings with biocytin filling , 1995, Neuroscience.

[18]  D. Contreras,et al.  Synchronization of fast (30-40 Hz) spontaneous cortical rhythms during brain activation , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  M. Steriade,et al.  Changes in neuronal conductance during different components of cortically generated spike-wave seizures , 2000, Neuroscience.

[20]  H. Markram A network of tufted layer 5 pyramidal neurons. , 1997, Cerebral cortex.

[21]  D. McCormick,et al.  A model of the electrophysiological properties of thalamocortical relay neurons. , 1992, Journal of neurophysiology.

[22]  P. Nunez,et al.  Electric fields of the brain , 1981 .

[23]  Y. Ben-Ari,et al.  Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy , 2001, Nature Neuroscience.

[24]  D. Contreras,et al.  Spike-wave complexes and fast components of cortically generated seizures. I. Role of neocortex and thalamus. , 1998, Journal of neurophysiology.

[25]  A. Destexhe,et al.  Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. , 1999, Journal of neurophysiology.

[26]  T. Sejnowski,et al.  Computational Models of Thalamocortical Augmenting Responses , 1998, The Journal of Neuroscience.

[27]  Teuvo Kohonen,et al.  The self-organizing map , 1990 .

[28]  E. White,et al.  Intrinsic circuitry involving the local axon collaterals of corticothalamic projection cells in mouse SmI cortex , 1987, The Journal of comparative neurology.

[29]  M. Steriade Synchronized activities of coupled oscillators in the cerebral cortex and thalamus at different levels of vigilance. , 1997, Cerebral cortex.

[30]  D Contreras,et al.  Absence of a prevalent laminar distribution of IPSPs in association cortical neurons of cat. , 1997, Journal of neurophysiology.

[31]  D. Contreras,et al.  Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. , 1998, Journal of neurophysiology.

[32]  R. Reid,et al.  Synchronous activity in the visual system. , 1999, Annual review of physiology.

[33]  R. Traub,et al.  A mechanism for generation of long-range synchronous fast oscillations in the cortex , 1996, Nature.

[34]  K. Martin,et al.  Intracortical excitation of spiny neurons in layer 4 of cat striate cortex in vitro. , 1999, Cerebral cortex.

[35]  M. L. Pucak,et al.  Synaptic targets of pyramidal neurons providing intrinsic horizontal connections in monkey prefrontal cortex , 1998, The Journal of comparative neurology.

[36]  G. Bodenstein,et al.  Feature extraction from the electroencephalogram by adaptive segmentation , 1977, Proceedings of the IEEE.

[37]  W. Precht The synaptic organization of the brain G.M. Shepherd, Oxford University Press (1975). 364 pp., £3.80 (paperback) , 1976, Neuroscience.

[38]  P. Schwindt,et al.  Mechanisms underlying burst and regular spiking evoked by dendritic depolarization in layer 5 cortical pyramidal neurons. , 1999, Journal of neurophysiology.

[39]  Prof. Dr. Dr. Valentino Braitenberg,et al.  Cortex: Statistics and Geometry of Neuronal Connectivity , 1998, Springer Berlin Heidelberg.

[40]  Yunhua Wang,et al.  Dynamic extraction of visual evoked potentials through spatial analysis and dipole localization , 1995, IEEE Transactions on Biomedical Engineering.

[41]  P. Schwindt,et al.  Synaptically evoked dendritic action potentials in rat neocortical pyramidal neurons. , 1998, Journal of neurophysiology.

[42]  J. DeFelipe,et al.  Patterns of GABABR1a,b Receptor Gene Expression in Monkey and Human Visual Cortex , 2001 .

[43]  B. Alger,et al.  Direct depolarization and antidromic action potentials transiently suppress dendritic IPSPs in hippocampal CA1 pyramidal cells. , 2001, Journal of neurophysiology.

[44]  W. Spain,et al.  GABAA mediated afterdepolarization in pyramidal neurons from rat neocortex. , 1997, Journal of neurophysiology.

[45]  T. Sejnowski,et al.  Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. , 2000, Journal of neurophysiology.

[46]  J. Hablitz,et al.  Potassium-Coupled Chloride Cotransport Controls Intracellular Chloride in Rat Neocortical Pyramidal Neurons , 2000, The Journal of Neuroscience.

[47]  S. Hestrin,et al.  A network of fast-spiking cells in the neocortex connected by electrical synapses , 1999, Nature.

[48]  D. Contreras,et al.  Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  A. Babloyantz,et al.  Evidence of Chaotic Dynamics of Brain Activity During the Sleep Cycle , 1985 .

[50]  J C Oakley,et al.  Dendritic calcium spikes in layer 5 pyramidal neurons amplify and limit transmission of ligand-gated dendritic current to soma. , 2001, Journal of neurophysiology.

[51]  S. Hestrin,et al.  Burst firing induces a rebound of synaptic strength at unitary neocortical synapses. , 2000, Journal of neurophysiology.

[52]  P. Buser,et al.  Rhythms in the alpha band in cats and their behavioural correlates. , 1997, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[53]  W. Spain,et al.  Linear to supralinear summation of AMPA-mediated EPSPs in neocortical pyramidal neurons. , 2000, Journal of neurophysiology.

[54]  L. Benardo,et al.  Separate activation of fast and slow inhibitory postsynaptic potentials in rat neocortex in vitro. , 1994, The Journal of physiology.

[55]  C. Blakemore,et al.  Pyramidal neurons in layer 5 of the rat visual cortex. III. Differential maturation of axon targeting, dendritic morphology, and electrophysiological properties , 1994, The Journal of comparative neurology.

[56]  R. McCarley,et al.  Neuroanatomical and neurophysiological aspects of sleep: basic science and clinical relevance. , 2000, Seminars in clinical neuropsychiatry.

[57]  M Steriade,et al.  Spike-wave complexes and fast components of cortically generated seizures. II. Extra- and intracellular patterns. , 1998, Journal of neurophysiology.

[58]  P. Nunez,et al.  Neocortical Dynamics and Human EEG Rhythms , 1995 .

[59]  A J Gabor,et al.  Automated interictal EEG spike detection using artificial neural networks. , 1992, Electroencephalography and clinical neurophysiology.

[60]  D. Contreras,et al.  Synchronization of fast (30-40 Hz) spontaneous oscillations in intrathalamic and thalamocortical networks , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[61]  F. H. Lopes da Silva,et al.  Biophysical issues at the frontiers of the interpretation of EEG/MEG signals. , 1996 .

[62]  Stephen R. Williams,et al.  Mechanisms and consequences of action potential burst firing in rat neocortical pyramidal neurons , 1999, The Journal of physiology.

[63]  G. Stuart,et al.  Site independence of EPSP time course is mediated by dendritic I(h) in neocortical pyramidal neurons. , 2000, Journal of neurophysiology.

[64]  M Steriade,et al.  Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[65]  Y. Zilberter,et al.  Dendritic release of glutamate suppresses synaptic inhibition of pyramidal neurons in rat neocortex , 2000, The Journal of physiology.

[66]  K. Matsunami,et al.  Dopaminergic inhibition of excitatory inputs onto pyramidal tract neurons in cat motor cortex , 2001, Neuroscience Letters.

[67]  M. Steriade Corticothalamic resonance, states of vigilance and mentation , 2000, Neuroscience.

[68]  B. Connors,et al.  A network of electrically coupled interneurons drives synchronized inhibition in neocortex , 2000, Nature Neuroscience.

[69]  G. Orban,et al.  Practising orientation identification improves orientation coding in V1 neurons , 2001, Nature.

[70]  J. A. Varela,et al.  Differential Depression at Excitatory and Inhibitory Synapses in Visual Cortex , 1999, The Journal of Neuroscience.

[71]  Cornelis J. Stam,et al.  Investigation of the dynamics underlying periodic complexes in the EEG , 1999, Biological Cybernetics.

[72]  G Pfurtscheller,et al.  Frequency dependence of the transmission of the EEG from cortex to scalp. , 1975, Electroencephalography and clinical neurophysiology.

[73]  D. McCormick,et al.  Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. , 1992, Journal of neurophysiology.

[74]  M Steriade,et al.  Spike-wave complexes and fast components of cortically generated seizures. III. Synchronizing mechanisms. , 1998, Journal of neurophysiology.

[75]  P. Schwindt,et al.  Post‐inhibitory excitation and inhibition in layer V pyramidal neurones from cat sensorimotor cortex. , 1991, The Journal of physiology.

[76]  Donald O. Walter,et al.  Mass action in the nervous system , 1975 .

[77]  B. Connors,et al.  Horizontal spread of synchronized activity in neocortex and its control by GABA-mediated inhibition. , 1989, Journal of neurophysiology.

[78]  F. L. D. Silva,et al.  Dynamics of EEGs as signals of neuronal populations: models and theoretical considerations , 1998 .

[79]  R. Deisz The GABAB receptor antagonist CGP 55845A reduces presynaptic GABAB actions in neocortical neurons of the rat in vitro , 1999, Neuroscience.

[80]  B W Connors,et al.  Spatiotemporal properties of short-term plasticity sensorimotor thalamocortical pathways of the rat , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[81]  M Steriade,et al.  Electrophysiology of cat association cortical cells in vivo: intrinsic properties and synaptic responses. , 1993, Journal of neurophysiology.

[82]  M. C. Angulo,et al.  Developmental Synaptic Changes Increase the Range of Integrative Capabilities of an Identified Excitatory Neocortical Connection , 1999, The Journal of Neuroscience.

[83]  B. Connors,et al.  Efficacy of Thalamocortical and Intracortical Synaptic Connections Quanta, Innervation, and Reliability , 1999, Neuron.

[84]  F H Duffy,et al.  Brain electrical activity mapping (BEAM): A method for extending the clinical utility of EEG and evoked potential data , 1979, Annals of neurology.

[85]  L. Tarassenko,et al.  Analysis of the sleep EEG using a multilayer network with spatial organisation , 1992 .

[86]  F. L. D. Silva,et al.  The cortical source of the alpha rhythm , 1977, Neuroscience Letters.

[87]  M. Diamond,et al.  Integration of multiple-whisker inputs in rat somatosensory cortex. , 2001, Cerebral cortex.

[88]  B. Connors,et al.  Intrinsic oscillations of neocortex generated by layer 5 pyramidal neurons. , 1991, Science.

[89]  F. D. da Silva,et al.  Organization of thalamic and cortical alpha rhythms: spectra and coherences. , 1973, Electroencephalography and clinical neurophysiology.

[90]  B Sakmann,et al.  Synaptic efficacy and reliability of excitatory connections between the principal neurones of the input (layer 4) and output layer (layer 5) of the neocortex , 2000, The Journal of physiology.

[91]  J. Cowan,et al.  Excitatory and inhibitory interactions in localized populations of model neurons. , 1972, Biophysical journal.

[92]  H. Markram,et al.  Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. , 1997, The Journal of physiology.

[93]  M. Hallett,et al.  Transient Interhemispheric Neuronal Synchrony Correlates with Object Recognition , 2001, The Journal of Neuroscience.

[94]  D. McCormick,et al.  On the cellular and network bases of epileptic seizures. , 2001, Annual review of physiology.

[95]  J. J. Wright,et al.  Gross electrocortical activity as a linear wave phenomenon with variable temporal damping, regulated by ascending catecholamine neurones. , 1987, The International journal of neuroscience.

[96]  P. Rossini The electroencephalogram. Its patterns and origins , 1994 .

[97]  F. H. Lopes da Silva,et al.  Models of neuronal populations: the basic mechanisms of rhythmicity. , 1976, Progress in brain research.

[98]  D J Simons,et al.  Cortical columnar processing in the rat whisker-to-barrel system. , 1999, Journal of neurophysiology.

[99]  D. Prince,et al.  Frequency‐dependent depression of inhibition in guinea‐pig neocortex in vitro by GABAB receptor feed‐back on GABA release. , 1989, The Journal of physiology.

[100]  D. Contreras,et al.  Cortically-induced coherence of a thalamic-generated oscillation , 1999, Neuroscience.

[101]  B. Sakmann,et al.  Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons , 1997, The Journal of physiology.

[102]  F H da Silva,et al.  Essential differences between alpha rhythms and barbiturate spindles: spectra and thalamo-cortical coherences. , 1973, Electroencephalography and clinical neurophysiology.

[103]  W. Klimesch EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis , 1999, Brain Research Reviews.

[104]  F. L. D. Silva,et al.  Event-Related Desynchronization , 1999 .

[105]  B. Sakmann,et al.  Active propagation of somatic action potentials into neocortical pyramidal cell dendrites , 1994, Nature.

[106]  A. Burkhalter,et al.  Role of GABAB receptor-mediated inhibition in reciprocal interareal pathways of rat visual cortex. , 1999, Journal of neurophysiology.

[107]  M. de Curtis,et al.  Layer‐specific immunocytochemical localization of GABABR1a and GABABR1b receptors in the rat piriform cortex , 2000, The European journal of neuroscience.

[108]  E. Callaway Local circuits in primary visual cortex of the macaque monkey. , 1998, Annual review of neuroscience.

[109]  P H Smith,et al.  Anatomy, physiology, and synaptic responses of rat layer V auditory cortical cells and effects of intracellular GABA(A) blockade. , 2000, Journal of neurophysiology.

[110]  Christof Koch,et al.  Methods in Neuronal Modeling (2nd Edition) , 2000 .

[111]  M. Lancel The GABA(A) agonist THIP increases non-REM sleep and enhances non-REM sleep-specific delta activity in the rat during the dark period. , 1997, Sleep.

[112]  D. McCormick,et al.  Control of firing mode of corticotectal and corticopontine layer V burst-generating neurons by norepinephrine, acetylcholine, and 1S,3R- ACPD , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[113]  J. Lisman Bursts as a unit of neural information: making unreliable synapses reliable , 1997, Trends in Neurosciences.

[114]  M. Steriade To burst, or rather, not to burst , 2001, Nature Neuroscience.

[115]  A. Kohn,et al.  Functional neocortical microcircuitry demonstrated with intrinsic signal optical imaging in vitro , 1999, Neuroscience.

[116]  A. Destexhe Spike-and-Wave Oscillations Based on the Properties of GABAB Receptors , 1998, The Journal of Neuroscience.

[117]  W. Klimesch,et al.  'Paradoxical' alpha synchronization in a memory task. , 1999, Brain research. Cognitive brain research.

[118]  F. Duffy,et al.  Significance probability mapping: an aid in the topographic analysis of brain electrical activity. , 1981, Electroencephalography and clinical neurophysiology.

[119]  G. Pfurtscheller Central beta rhythm during sensorimotor activities in man. , 1981, Electroencephalography and clinical neurophysiology.

[120]  J. Noebels,et al.  Increased excitability and inward rectification in layer V cortical pyramidal neurons in the epileptic mutant mouse Stargazer. , 1997, Journal of neurophysiology.

[121]  B W Connors,et al.  Backward cortical projections to primary somatosensory cortex in rats extend long horizontal axons in layer I , 1998, The Journal of comparative neurology.

[122]  M. Calcagnotto,et al.  Presynaptic Long-Term Potentiation in Corticothalamic Synapses , 1999, The Journal of Neuroscience.

[123]  A. Reyes,et al.  Influence of dendritic conductances on the input-output properties of neurons. , 2001, Annual review of neuroscience.

[124]  P. Somogyi,et al.  Salient features of synaptic organisation in the cerebral cortex 1 Published on the World Wide Web on 3 March 1998. 1 , 1998, Brain Research Reviews.

[125]  M Unser,et al.  Fast wavelet transformation of EEG. , 1994, Electroencephalography and clinical neurophysiology.

[126]  Y. Kubota,et al.  GABAergic cell subtypes and their synaptic connections in rat frontal cortex. , 1997, Cerebral cortex.

[127]  Michele Ferrara,et al.  The spontaneous K-complex during stage 2 sleep: is it the ‘forerunner’ of delta waves? , 2000, Neuroscience Letters.

[128]  J. Deuchars,et al.  Synaptic interactions in neocortical local circuits: dual intracellular recordings in vitro. , 1997, Cerebral cortex.

[129]  Rainer Goebel,et al.  Neural synchrony correlates with surface segregation rules , 2000, Nature.

[130]  C. Blakemore,et al.  Pyramidal neurons in layer 5 of the rat visual cortex. I. Correlation among cell morphology, intrinsic electrophysiological properties, and axon targets , 1994, The Journal of comparative neurology.

[131]  B. Leonard,et al.  Principles of neural science, third edition. By E. R. Kandel, J. H. Schwartz and T. M. Jessell. Appleton & Lange, 1991. pp. 1135 + xxxvii. ISBN 0‐8385‐8068‐8 , 1993 .

[132]  E. Halgren,et al.  Timing and Localization of Movement-Related Spectral Changes in the Human Peri-Rolandic Cortex: Intracranial Recordings , 2001, NeuroImage.

[133]  K. Grieve,et al.  The primate pulvinar nuclei: vision and action , 2000, Trends in Neurosciences.

[134]  M. Armstrong‐James,et al.  Flow of excitation within rat barrel cortex on striking a single vibrissa. , 1992, Journal of neurophysiology.

[135]  Maria V. Sanchez-Vives,et al.  Cellular and network mechanisms of rhythmic recurrent activity in neocortex , 2000, Nature Neuroscience.

[136]  J. Yordanova,et al.  Event‐related alpha oscillations are functionally associated with P300 during information processing , 1998, Neuroreport.

[137]  M Steriade,et al.  Intracellular study of excitability in the seizure-prone neocortex in vivo. , 1999, Journal of neurophysiology.

[138]  Paul Antoine Salin,et al.  Spontaneous GABAA receptor-mediated inhibitory currents in adult rat somatosensory cortex. , 1996, Journal of neurophysiology.

[139]  A. Thomson,et al.  Postsynaptic pyramidal target selection by descending layer III pyramidal axons: dual intracellular recordings and biocytin filling in slices of rat neocortex , 1998, Neuroscience.

[140]  E. Callaway,et al.  Laminar sources of synaptic input to cortical inhibitory interneurons and pyramidal neurons , 2000, Nature Neuroscience.

[141]  M. Mackey,et al.  Temporal Disorder in Human Oscillatory Systems , 1987 .

[142]  C. Schroeder,et al.  Intermodal selective attention in monkeys. I: distribution and timing of effects across visual areas. , 2000, Cerebral cortex.

[143]  C. Koch,et al.  Visibility of synaptically induced conductance changes: theory and simulations of anatomically characterized cortical pyramidal cells , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[144]  E. Basar,et al.  Gamma, alpha, delta, and theta oscillations govern cognitive processes. , 2001, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[145]  M. Deschenes,et al.  Corticothalamic projections from layer 5 of the vibrissal barrel cortex in the rat , 2000, The Journal of comparative neurology.

[146]  D. Alkon,et al.  Heterosynaptic transformation of GABAergic gating in the hippocampus and effects of carbonic anhydrase inhibition. , 2001, The Journal of pharmacology and experimental therapeutics.

[147]  C. Radici,et al.  Postnatal differentiation of firing properties and morphological characteristics in layer V pyramidal neurons of the sensorimotor cortex , 1998, Neuroscience.

[148]  W Singer,et al.  Visual feature integration and the temporal correlation hypothesis. , 1995, Annual review of neuroscience.

[149]  G. Hu,et al.  Electrophysiological and morphological properties of pyramidal and nonpyramidal neurons in the cat motor cortex in vitro , 1996, Neuroscience.

[150]  T. Hicks,et al.  GABAA receptor-induced inhibition of neuronal burst firing is weak in rat somatosensory cortex. , 1993, Neuroreport.

[151]  D. McCormick,et al.  Sleep and arousal: thalamocortical mechanisms. , 1997, Annual review of neuroscience.

[152]  A. Zoubir,et al.  Seizure detection of newborn EEG using a model-based approach , 1998 .

[153]  G. Pfurtscheller,et al.  Differentiation between finger, toe and tongue movement in man based on 40 Hz EEG. , 1994, Electroencephalography and clinical neurophysiology.

[154]  David T. J. Liley,et al.  Simulation of electrocortical waves , 1995, Biological Cybernetics.

[155]  A. J. Hermans,et al.  A model of the spatial-temporal characteristics of the alpha rhythm. , 1982, Bulletin of mathematical biology.

[156]  W. Lytton,et al.  GABAA-mediated IPSCs in piriform cortex have fast and slow components with different properties and locations on pyramidal cells. , 1997, Journal of neurophysiology.

[157]  Z. Gil,et al.  Properties of Convergent Thalamocortical and Intracortical Synaptic Potentials in Single Neurons of Neocortex , 1996, The Journal of Neuroscience.

[158]  M. Sirota,et al.  Sharp, local synchrony among putative feed-forward inhibitory interneurons of rabbit somatosensory cortex. , 1998, Journal of neurophysiology.

[159]  G. V. Simpson,et al.  Parieto‐occipital ∼1 0Hz activity reflects anticipatory state of visual attention mechanisms , 1998 .

[160]  O. Bertrand,et al.  Oscillatory gamma-band (30-70 Hz) activity induced by a visual search task in humans. , 1997, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[161]  M. Massimini,et al.  Extracellular calcium fluctuations and intracellular potentials in the cortex during the slow sleep oscillation. , 2001, Journal of neurophysiology.

[162]  D. McCormick,et al.  Properties of a hyperpolarization‐activated cation current and its role in rhythmic oscillation in thalamic relay neurones. , 1990, The Journal of physiology.

[163]  Y Kitazoe,et al.  Theoretical analysis on relationship between the neural activity and the EEG. , 1983, Journal of theoretical biology.

[164]  S. Nelson,et al.  Multiple forms of short-term plasticity at excitatory synapses in rat medial prefrontal cortex. , 2000, Journal of neurophysiology.

[165]  B. Connors,et al.  Two networks of electrically coupled inhibitory neurons in neocortex , 1999, Nature.

[166]  B. Sakmann,et al.  Calcium electrogenesis in distal apical dendrites of layer 5 pyramidal cells at a critical frequency of back-propagating action potentials. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[167]  H. Dodt,et al.  GABAA and GABAB receptors on neocortical neurons are differentially distributed , 2001, The European journal of neuroscience.

[168]  Christof Koch,et al.  Some further ideas regarding the neuronal basis of awareness , 1994 .

[169]  Dietrich Lehmann,et al.  Evaluation of Methods for Three-Dimensional Localization of Electrical Sources in the Human Brain , 1978, IEEE Transactions on Biomedical Engineering.

[170]  T. Kaneko,et al.  Predominant information transfer from layer III pyramidal neurons to corticospinal neurons , 2000, The Journal of comparative neurology.

[171]  D. B. Bender,et al.  Effect of attentive fixation in macaque thalamus and cortex. , 2001, Journal of neurophysiology.

[172]  John J. Foxe,et al.  Determinants and mechanisms of attentional modulation of neural processing. , 2001, Frontiers in Bioscience.

[173]  G. V. Simpson,et al.  Anticipatory Biasing of Visuospatial Attention Indexed by Retinotopically Specific α-Bank Electroencephalography Increases over Occipital Cortex , 2000, The Journal of Neuroscience.

[174]  B. Connors,et al.  Functions of Local Circuits in Neocortex: Synchrony and Laminae , 1995 .

[175]  A. Aertsen Dynamic Coupling in Cortical Neural Networks , 1993 .

[176]  M. Steriade,et al.  A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[177]  D. Contreras,et al.  Intracellular and computational characterization of the intracortical inhibitory control of synchronized thalamic inputs in vivo. , 1997, Journal of neurophysiology.

[178]  H. Markram,et al.  Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. , 2000, Science.

[179]  J. S. Barlow,et al.  Computerized EEG pattern classification by adaptive segmentation and probability density function classification. Clinical evaluation. , 1985, Electroencephalography and clinical neurophysiology.

[180]  M A Nicolelis,et al.  Spatiotemporal properties of layer V neurons of the rat primary somatosensory cortex. , 1999, Cerebral cortex.

[181]  R. M. Siegel,et al.  Pattern recognition of the electroencephalogram by artificial neural networks. , 1993, Electroencephalography and clinical neurophysiology.

[182]  L. Benardo,et al.  Recruitment of GABAergic inhibition and synchronization of inhibitory interneurons in rat neocortex. , 1997, Journal of neurophysiology.

[183]  T. Sejnowski,et al.  Thalamic and thalamocortical mechanisms underlying 3 Hz spike-and-wave discharges. , 1999, Progress in brain research.

[184]  B W Connors,et al.  Synchronized excitation and inhibition driven by intrinsically bursting neurons in neocortex. , 1989, Journal of neurophysiology.

[185]  M. Steriade Coherent oscillations and short-term plasticity in corticothalamic networks , 1999, Trends in Neurosciences.

[186]  T. Sejnowski,et al.  Origin of slow cortical oscillations in deafferented cortical slabs. , 2000, Cerebral cortex.

[187]  H. Markram,et al.  The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[188]  Christof Koch,et al.  Introduction to methods in neuronal modeling , 1989 .

[189]  J. H. Mellanby FAST OSCILLATIONS IN CORTICAL CIRCUITS. , 2000 .

[190]  C. Gray,et al.  Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[191]  A. Rougeul,et al.  A 10 Hz "alpha-like" rhythm in the visual cortex of the waking cat. , 1992, Electroencephalography and clinical neurophysiology.

[192]  B. Sakmann,et al.  Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons , 2001, The Journal of physiology.

[193]  Jian-Young Wu,et al.  Propagating Activation during Oscillations and Evoked Responses in Neocortical Slices , 1999, The Journal of Neuroscience.

[194]  P. Goldman-Rakic,et al.  Serotonin induces EPSCs preferentially in layer V pyramidal neurons of the frontal cortex in the rat. , 2000, Cerebral cortex.

[195]  H. Wilson Simplified dynamics of human and mammalian neocortical neurons. , 1999, Journal of theoretical biology.

[196]  N. Spruston Distant synapses raise their voices , 2000, Nature Neuroscience.

[197]  M. Castro-Alamancos,et al.  Origin of Synchronized Oscillations Induced by Neocortical Disinhibition In Vivo , 2000, The Journal of Neuroscience.

[198]  Ben H. Jansen,et al.  A neurophysiologically-based mathematical model of flash visual evoked potentials , 2004, Biological Cybernetics.

[199]  J. Lübke,et al.  Reliable synaptic connections between pairs of excitatory layer 4 neurones within a single ‘barrel’ of developing rat somatosensory cortex , 1999, The Journal of physiology.

[200]  E. Geijo-Barrientos,et al.  Laminar Localization, Morphology, and Physiological Properties of Pyramidal Neurons that Have the Low-Threshold Calcium Current in the Guinea-Pig Medial Frontal Cortex , 1996, The Journal of Neuroscience.

[201]  H. Wilson Spikes, Decisions, and Actions: The Dynamical Foundations of Neuroscience , 1999 .

[202]  D. Johnston,et al.  Voltage-dependent properties of dendrites that eliminate location-dependent variability of synaptic input. , 1999, Journal of neurophysiology.

[203]  M. Steriade,et al.  Cellular substrates and laminar profile of sleep K-complex , 1997, Neuroscience.

[204]  Robert Miller,et al.  Cortico-thalamic interplay and the security of operation of neural assemblies and temporal chains in the cerebral cortex , 1996, Biological Cybernetics.

[205]  D. Prince,et al.  Changes of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptors in layer v of epileptogenic, chronically isolated rat neocortex , 2001, Neuroscience.

[206]  B. Sakmann,et al.  A new cellular mechanism for coupling inputs arriving at different cortical layers , 1999, Nature.

[207]  R. Desimone,et al.  Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention , 2001, Science.

[208]  T. Mima,et al.  Increased Synchronization of Cortical Oscillatory Activities between Human Supplementary Motor and Primary Sensorimotor Areas during Voluntary Movements , 2001, The Journal of Neuroscience.

[209]  M Schürmann,et al.  Functional aspects of alpha oscillations in the EEG. , 2001, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[210]  Y. Kawaguchi Physiological subgroups of nonpyramidal cells with specific morphological characteristics in layer II/III of rat frontal cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[211]  M. C. Angulo,et al.  Postsynaptic glutamate receptors and integrative properties of fast-spiking interneurons in the rat neocortex. , 1999, Journal of neurophysiology.

[212]  M Steriade,et al.  Leading role of thalamic over cortical neurons during postinhibitory rebound excitation. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[213]  R. Eckhorn,et al.  Contour decouples gamma activity across texture representation in monkey striate cortex. , 2000, Cerebral cortex.

[214]  M. Steriade,et al.  Natural waking and sleep states: a view from inside neocortical neurons. , 2001, Journal of neurophysiology.

[215]  D. Prince,et al.  Cholinergic switching within neocortical inhibitory networks. , 1998, Science.

[216]  G. Stuart,et al.  Backpropagation of Physiological Spike Trains in Neocortical Pyramidal Neurons: Implications for Temporal Coding in Dendrites , 2000, The Journal of Neuroscience.

[217]  A. Keller,et al.  Thalamic-Evoked Synaptic Interactions in Barrel Cortex Revealed by Optical Imaging , 2000, The Journal of Neuroscience.

[218]  M. Curtis,et al.  Cellular mechanisms underlying spontaneous interictal spikes in an acute model of focal cortical epileptogenesis , 1999, Neuroscience.

[219]  Y. Kawaguchi,et al.  Noradrenergic Excitation and Inhibition of GABAergic Cell Types in Rat Frontal Cortex , 1998, The Journal of Neuroscience.

[220]  J. van Brederode,et al.  Differences in inhibitory synaptic input between layer II-III and layer V neurons of the cat neocortex. , 1995, Journal of neurophysiology.

[221]  E. G. Jones,et al.  Viewpoint: the core and matrix of thalamic organization , 1998, Neuroscience.

[222]  N Dürmüller,et al.  Role of Thalamic and Cortical Neurons in Augmenting Responses and Self-Sustained Activity: Dual Intracellular Recordings In Vivo , 1998, The Journal of Neuroscience.

[223]  W. Walter,et al.  COMPARISON OF SUBCORTICAL, CORTICAL AND SCALP ACTIVITY USING CHRONICALLY INDWELLING ELECTRODES IN MAN. , 1965, Electroencephalography and clinical neurophysiology.

[224]  Kathryn E Webster,et al.  The N550 component of the evoked K‐complex: A modality non‐specific response? , 1999, Journal of sleep research.

[225]  M Steriade,et al.  Electrophysiological correlates of sleep delta waves. , 1998, Electroencephalography and clinical neurophysiology.