DISCOVERY AND COSMOLOGICAL IMPLICATIONS OF SPT-CL J2106-5844, THE MOST MASSIVE KNOWN CLUSTER AT z>1

Using the South Pole Telescope (SPT), we have discovered the most massive known galaxy cluster at z>1, SPT-CL J2106-5844. In addition to producing a strong Sunyaev–Zel'dovich (SZ) effect signal, this system is a luminous X-ray source and its numerous constituent galaxies display spatial and color clustering, all indicating the presence of a massive galaxy cluster. Very Large Telescope and Magellan spectroscopy of 18 member galaxies shows that the cluster is at z = 1.132+0.002 −0.003. Chandra observations obtained through a combined HRC-ACIS GTO program reveal an X-ray spectrum with an Fe K line redshifted by z = 1.18 ± 0.03. These redshifts are consistent with the galaxy colors found in optical, near-infrared, and mid-infrared imaging. SPT-CL J2106-5844 displays extreme X-ray properties for a cluster having a core-excluded temperature of TX = 11.0+2.6 −1.9 keV and a luminosity (within r 500) of LX (0.5–2.0 keV) = (13.9 ± 1.0) × 1044 erg s−1. The combined mass estimate from measurements of the SZ effect and X-ray data is M 200 = (1.27 ± 0.21) × 1015 h −1 70  M ☉. The discovery of such a massive gravitationally collapsed system at high redshift provides an interesting laboratory for galaxy formation and evolution, and is a probe of extreme perturbations of the primordial matter density field. We discuss the latter, determining that, under the assumption of ΛCDM cosmology with only Gaussian perturbations, there is only a 7% chance of finding a galaxy cluster similar to SPT-CL J2106-5844 in the 2500 deg2 SPT survey region and that only one such galaxy cluster is expected in the entire sky.

[1]  M. Lueker,et al.  GALAXY CLUSTERS DISCOVERED VIA THE SUNYAEV–ZEL’DOVICH EFFECT IN THE FIRST 720 SQUARE DEGREES OF THE SOUTH POLE TELESCOPE SURVEY , 2012, 1203.5775.

[2]  B. A. Benson,et al.  A MULTIBAND STUDY OF THE GALAXY POPULATIONS OF THE FIRST FOUR SUNYAEV–ZEL'DOVICH EFFECT SELECTED GALAXY CLUSTERS , 2011, 1103.4612.

[3]  D. Huterer,et al.  Simultaneous falsification of Λ CDM and quintessence with massive, distant clusters , 2010, 1011.0004.

[4]  P. Rosati,et al.  The evolution of cool-core clusters , 2010, 1008.0754.

[5]  P. A. R. Ade,et al.  SPT-CL J0546-5345: A MASSIVE z>1 GALAXY CLUSTER SELECTED VIA THE SUNYAEV–ZEL'DOVICH EFFECT WITH THE SOUTH POLE TELESCOPE , 2010, 1006.5639.

[6]  Martin White,et al.  Cluster galaxy dynamics and the effects of large-scale environment , 2010, 1005.3022.

[7]  P. A. R. Ade,et al.  GALAXY CLUSTERS SELECTED WITH THE SUNYAEV–ZEL'DOVICH EFFECT FROM 2008 SOUTH POLE TELESCOPE OBSERVATIONS , 2010, 1003.0005.

[8]  J. Dunlop,et al.  A SPITZER-SELECTED GALAXY CLUSTER AT z = 1.62 , 2010, 1002.3158.

[9]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: POWER SPECTRA AND WMAP-DERIVED PARAMETERS , 2010, 1001.4635.

[10]  M. Nonino,et al.  Multi-wavelength study of XMMU J2235.3-2557: the most massive galaxy cluster at z > 1 , 2009, 0910.1716.

[11]  E. L. Wright,et al.  THE SPITZER DEEP, WIDE-FIELD SURVEY , 2009, 0906.0024.

[12]  O. Zahn,et al.  SHARPENING THE PRECISION OF THE SUNYAEV–ZEL'DOVICH POWER SPECTRUM , 2009, 0903.5322.

[13]  Alexey Vikhlinin,et al.  CHANDRA CLUSTER COSMOLOGY PROJECT III: COSMOLOGICAL PARAMETER CONSTRAINTS , 2008, 0812.2720.

[14]  P. A. R. Ade,et al.  GALAXY CLUSTERS DISCOVERED WITH A SUNYAEV–ZEL'DOVICH EFFECT SURVEY , 2008, 0810.1578.

[15]  H. Hoekstra,et al.  SPECTROSCOPIC CONFIRMATION OF A MASSIVE RED-SEQUENCE-SELECTED GALAXY CLUSTER AT z = 1.34 IN THE SpARCS-SOUTH CLUSTER SURVEY , 2008, 0810.0005.

[16]  S. Kay,et al.  Dark matter halo concentrations in the Wilkinson Microwave Anisotropy Probe year 5 cosmology , 2008, 0804.2486.

[17]  Michael S. Warren,et al.  Toward a Halo Mass Function for Precision Cosmology: The Limits of Universality , 2008, 0803.2706.

[18]  L. Moscardini,et al.  Virial Scaling of Massive Dark Matter Halos: Why Clusters Prefer a High Normalization Cosmology , 2007, astro-ph/0702241.

[19]  G. Lucia,et al.  The hierarchical formation of the brightest cluster galaxies , 2006, astro-ph/0606519.

[20]  C. Kaiser,et al.  HEATING VERSUS COOLING IN GALAXIES AND CLUSTERS OF GALAXIES , 2007 .

[21]  A. Finoguenov,et al.  Heating versus cooling in galaxies and clusters of galaxies : proceedings of the MPA/ESO/MPE/USM Joint Astronomy Conference held in Garching, Germany, 6-11 August 2006 , 2007 .

[22]  A. Hornstrup,et al.  Lack of cooling flow clusters at z>0.5 , 2007 .

[23]  E. L. Wright,et al.  Clusters of Galaxies in the First Half of the Universe from the IRAC Shallow Survey , 2008, 0804.4798.

[24]  B. T. Soifer,et al.  Photometric Redshifts in the IRAC Shallow Survey , 2006 .

[25]  Tyson Hare,et al.  IMACS: the wide-field imaging spectrograph on Magellan-Baade , 2006, SPIE Astronomical Telescopes + Instrumentation.

[26]  R. Nichol,et al.  The XMM Cluster Survey: A Massive Galaxy Cluster at z = 1.45 , 2006, astro-ph/0606075.

[27]  S. Borgani,et al.  On the efficiency and reliability of cluster mass estimates based on member galaxies , 2006, astro-ph/0605151.

[28]  J. G. Bartlett,et al.  Catalog extraction in SZ cluster surveys : a matched filter approach , 2006, astro-ph/0602424.

[29]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[30]  M. Brodwin,et al.  An IR-selected Galaxy Cluster at z = 1.41 , 2005, astro-ph/0510655.

[31]  A. Schwope,et al.  Discovery of an X-Ray-luminous Galaxy Cluster at z = 1.4 , 2005, astro-ph/0503004.

[32]  S. Borgani,et al.  Chandra and XMM-Newton Observations of RDCS 1252.9-2927, A Massive Cluster at z=1.24 , 2003, astro-ph/0309546.

[33]  R. Foley,et al.  Optical Photometry and Spectroscopy of the SN 1998bw–like Type Ic Supernova 2002ap , 2003, astro-ph/0307136.

[34]  D. Kelson Optimal Techniques in Two‐dimensional Spectroscopy: Background Subtraction for the 21st Century , 2003, astro-ph/0303507.

[35]  Ronald G. Probst,et al.  NEWFIRM: the widefield IR imager for NOAO 4-m telescopes , 2003, SPIE Astronomical Telescopes + Instrumentation.

[36]  Daniel Durand,et al.  Astronomical Data Analysis Software and Systems XI , 2009 .

[37]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[38]  M. Markevitch,et al.  A Textbook Example of a Bow Shock in the Merging Galaxy Cluster 1E 0657–56 , 2001, astro-ph/0110468.

[39]  L. Verde,et al.  Tests for primordial non-Gaussianity , 2000, astro-ph/0011180.

[40]  A. Klypin,et al.  Merging History as a Function of Halo Environment , 2000, astro-ph/0004132.

[41]  M. Geller,et al.  Kinematics and Mass Profile of AWM 7 , 1999, astro-ph/9909514.

[42]  Xiaohui Fan,et al.  The Most Massive Distant Clusters: Determining Ω and σ8 , 1998, astro-ph/9803277.

[43]  Michael J. Kurtz,et al.  RVSAO 2.0: Digital Redshifts and Radial Velocities , 1998, astro-ph/9803252.

[44]  J. Henry A Measurement of the Density Parameter Derived from the Evolution of Cluster X-Ray Temperatures , 1997 .

[45]  M. Donahue,et al.  A Very Hot High-Redshift Cluster of Galaxies: More Trouble for Ω0 = 1 , 1997, astro-ph/9707010.

[46]  D. Fadda,et al.  The Observational Distribution of Internal Velocity Dispersions in Nearby Galaxy Clusters , 1996, astro-ph/9606098.

[47]  J. Thorstensen,et al.  An Optical/X--ray Study of A576, a Galaxy Cluster with a Cold Core , 1996 .

[48]  R. Abraham,et al.  Galaxy cluster virial masses and Omega , 1995, astro-ph/9509034.

[49]  A. Biviano,et al.  Velocity Dispersions and X-Ray Temperatures of Galaxy Clusters , 1995, astro-ph/9507031.

[50]  S. Matarrese,et al.  The mass function from local density maxima - Groups and clusters of galaxies , 1989 .

[51]  S. Matarrese,et al.  The Effect of Non-Gaussian Statistics on the Mass Multiplicity of Cosmic Structures , 1988 .

[52]  R. Wade,et al.  The Radial Velocity Curve and Peculiar TiO Distribution of the Red Secondary Star in Z Chamaeleontis , 1988 .

[53]  K. Horne,et al.  AN OPTIMAL EXTRACTION ALGORITHM FOR CCD SPECTROSCOPY. , 1986 .