Threading Dynamics of Ring Polymers in a Gel.

We perform large scale three-dimensional molecular dynamics simulations of unlinked and unknotted ring polymers diffusing through a background gel, here a three-dimensional cubic lattice. Taking advantage of this architecture, we propose a new method to unambiguously identify and quantify inter-ring threadings (penetrations) and to relate these to the dynamics of the ring polymers. We find that both the number and the persistence time of the threadings increase with the length of the chains, ultimately leading to a percolating network of inter-ring penetrations. We discuss the implications of these findings for the possible emergence of a topological jammed state of very long rings.

[1]  Rae M. Robertson,et al.  Strong effects of molecular topology on diffusion of entangled DNA molecules , 2007, Proceedings of the National Academy of Sciences.

[2]  Wittmer,et al.  Topological effects in ring polymers. II. Influence Of persistence length , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[3]  M. Bernabei,et al.  Fluids of semiflexible ring polymers: effective potentials and clustering , 2013 .

[4]  Obukhov,et al.  Dynamics of a ring polymer in a gel. , 1994, Physical review letters.

[5]  G. Fredrickson The theory of polymer dynamics , 1996 .

[6]  M. S. Turner,et al.  The topological glass in ring polymers , 2013 .

[7]  G. Grest,et al.  Dynamics of entangled linear polymer melts: A molecular‐dynamics simulation , 1990 .

[8]  U. Alon,et al.  GEL ELECTROPHORESIS AND DIFFUSION OF RING-SHAPED DNA , 1997, cond-mat/9702154.

[9]  D Richter,et al.  Unexpected power-law stress relaxation of entangled ring polymers. , 2008, Nature materials.

[10]  Y. Matsushita,et al.  Topological effect in ring polymers investigated with Monte Carlo simulation. , 2008, The Journal of chemical physics.

[11]  Shlomo Havlin,et al.  Crumpled globule model of the three-dimensional structure of DNA , 1993 .

[12]  M. Rubinstein,et al.  Dynamics of ring polymers in the presence of fixed obstacles. , 1986, Physical review letters.

[13]  Soong Ho Um,et al.  Enzyme-catalysed assembly of DNA hydrogel , 2006, Nature materials.

[14]  Kurt Kremer,et al.  Molecular dynamics simulation study of nonconcatenated ring polymers in a melt. I. Statics. , 2011, The Journal of chemical physics.

[15]  Jacques Buffle,et al.  Size effects on diffusion processes within agarose gels. , 2004, Biophysical journal.

[16]  W. Haensch,et al.  High-density integration of carbon nanotubes via chemical self-assembly. , 2012, Nature nanotechnology.

[17]  T. Sakaue Ring polymers in melts and solutions: scaling and crossover. , 2011, Physical review letters.

[18]  P. Gennes Scaling Concepts in Polymer Physics , 1979 .

[19]  Soong Ho Um,et al.  A cell-free protein-producing gel. , 2009, Nature materials.

[20]  Kurt Kremer,et al.  Statistics of polymer rings in the melt: a numerical simulation study , 2009, Physical biology.

[21]  Rae M. Robertson,et al.  Diffusion of isolated DNA molecules: dependence on length and topology. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Kurt Kremer,et al.  Rheology and Microscopic Topology of Entangled Polymeric Liquids , 2004, Science.

[23]  D. Vlassopoulos,et al.  Viscosity of ring polymer melts. , 2013, ACS macro letters.

[24]  J. M. Deutsch Equilibrium size of large ring molecules , 1999 .

[25]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[26]  J. Klein Dynamics of entangled linear, branched, and cyclic polymers , 1986 .

[27]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .