Asymptotically Exact A Posteriori Error Analysis for the Mixed Laplace Eigenvalue Problem

Abstract This paper derives a posteriori error estimates for the mixed numerical approximation of the Laplace eigenvalue problem. We discuss a reconstruction in the standard H 0 1 {H_{0}^{1}} -conforming space for the primal variable of the mixed Laplace eigenvalue problem and compare it with analogous approaches present in the literature for the corresponding source problem. In the case of Raviart–Thomas finite elements of arbitrary polynomial degree, the resulting error estimator constitutes a guaranteed upper bound for the error and is shown to be local efficient. Our reconstruction is performed locally on a set of vertex patches.

[1]  Pierre Ladevèze,et al.  Error Estimate Procedure in the Finite Element Method and Applications , 1983 .

[2]  Martin Vohralík,et al.  A Posteriori Error Estimates for Lowest-Order Mixed Finite Element Discretizations of Convection-Diffusion-Reaction Equations , 2007, SIAM J. Numer. Anal..

[3]  Martin Vohralík,et al.  Polynomial-Degree-Robust A Posteriori Estimates in a Unified Setting for Conforming, Nonconforming, Discontinuous Galerkin, and Mixed Discretizations , 2015, SIAM J. Numer. Anal..

[4]  Peter Oswald,et al.  Multilevel Finite Element Approximation , 1994 .

[5]  Dietrich Braess,et al.  Equilibrated residual error estimator for edge elements , 2007, Math. Comput..

[6]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[7]  Ricardo G. Durán,et al.  A POSTERIORI ERROR ESTIMATORS FOR MIXED APPROXIMATIONS OF EIGENVALUE PROBLEMS , 1999 .

[8]  Peter Oswald,et al.  Finite element approximation , 1994 .

[9]  Daniele Boffi,et al.  Finite element approximation of eigenvalue problems , 2010, Acta Numerica.

[10]  Martin Vohralík,et al.  A unified framework for a posteriori error estimation for the Stokes problem , 2012, Numerische Mathematik.

[11]  Carsten Carstensen,et al.  Error reduction and convergence for an adaptive mixed finite element method , 2006, Math. Comput..

[12]  Daniele Boffi,et al.  Optimal convergence of adaptive FEM for eigenvalue clusters in mixed form , 2015, Math. Comput..

[13]  Francesca Gardini Mixed approximation of eigenvalue problems: A superconvergence result , 2009 .

[14]  Martin Vohralík,et al.  Unified primal formulation-based a priori and a posteriori error analysis of mixed finite element methods , 2010, Math. Comput..

[15]  Ricardo H. Nochetto,et al.  Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..

[16]  Fleurianne Bertrand,et al.  A Posteriori Error Estimation for Planar Linear Elasticity by Stress Reconstruction , 2017, Comput. Methods Appl. Math..

[17]  J. Oden,et al.  A unified approach to a posteriori error estimation using element residual methods , 1993 .

[18]  Daniele Boffi,et al.  Residual-based a posteriori error estimation for the Maxwell's eigenvalue problem , 2016 .

[19]  J. Roßmann,et al.  Elliptic Boundary Value Problems in Domains with Point Singularities , 2002 .

[20]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[21]  R. Nochetto,et al.  Theory of adaptive finite element methods: An introduction , 2009 .

[22]  Rolf Stenberg,et al.  Postprocessing schemes for some mixed finite elements , 1991 .

[23]  Shipeng Mao,et al.  An optimally convergent adaptive mixed finite element method , 2008, Numerische Mathematik.

[24]  Long Chen,et al.  Convergence and optimality of adaptive mixed finite element methods , 2010, Math. Comput..

[25]  Zhangxin Chen,et al.  On the implementation of mixed methods as nonconforming methods for second-order elliptic problems , 1995 .

[26]  Rob P. Stevenson,et al.  Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..

[27]  Daniele Boffi,et al.  A Posteriori Error Estimates for Maxwell’s Eigenvalue Problem , 2019, J. Sci. Comput..

[28]  Mark Ainsworth,et al.  A Posteriori Error Estimation for Lowest Order Raviart-Thomas Mixed Finite Elements , 2007, SIAM J. Sci. Comput..

[29]  Joscha Gedicke,et al.  Arnold-Winther Mixed Finite Elements for Stokes Eigenvalue Problems , 2018, SIAM J. Sci. Comput..

[30]  Ricardo H. Nochetto,et al.  Primer of Adaptive Finite Element Methods , 2011 .

[31]  Christian Kreuzer,et al.  Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..

[32]  D. Boffi,et al.  A posteriori error analysis for the mixed Laplace eigenvalue problem: investigations for the BDM‐element , 2019, PAMM.

[33]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[34]  Carsten Carstensen,et al.  Axioms of adaptivity , 2013, Comput. Math. Appl..

[35]  Ricardo G. Durán,et al.  A Posteriori Error Estimates for the Finite Element Approximation of Eigenvalue Problems , 2003 .

[36]  Carsten Carstensen,et al.  An optimal adaptive mixed finite element method , 2011, Math. Comput..

[37]  Rolf Stenberg,et al.  Energy norm a posteriori error estimates for mixed finite element methods , 2006, Math. Comput..

[38]  Kwang-Yeon Kim,et al.  Guaranteed a posteriori error estimator for mixed finite element methods of elliptic problems , 2012, Appl. Math. Comput..

[39]  W. Prager,et al.  Approximations in elasticity based on the concept of function space , 1947 .

[40]  D. Arnold,et al.  Mixed and nonconforming finite element methods : implementation, postprocessing and error estimates , 1985 .

[41]  Rüdiger Verfürth,et al.  A Posteriori Error Estimation Techniques for Finite Element Methods , 2013 .

[42]  Shipeng Mao,et al.  A Convergent Nonconforming Adaptive Finite Element Method with Quasi-Optimal Complexity , 2010, SIAM J. Numer. Anal..

[43]  Dietmar Gallistl,et al.  An optimal adaptive FEM for eigenvalue clusters , 2015, Numerische Mathematik.