Asymptotically Exact A Posteriori Error Analysis for the Mixed Laplace Eigenvalue Problem
暂无分享,去创建一个
[1] Pierre Ladevèze,et al. Error Estimate Procedure in the Finite Element Method and Applications , 1983 .
[2] Martin Vohralík,et al. A Posteriori Error Estimates for Lowest-Order Mixed Finite Element Discretizations of Convection-Diffusion-Reaction Equations , 2007, SIAM J. Numer. Anal..
[3] Martin Vohralík,et al. Polynomial-Degree-Robust A Posteriori Estimates in a Unified Setting for Conforming, Nonconforming, Discontinuous Galerkin, and Mixed Discretizations , 2015, SIAM J. Numer. Anal..
[4] Peter Oswald,et al. Multilevel Finite Element Approximation , 1994 .
[5] Dietrich Braess,et al. Equilibrated residual error estimator for edge elements , 2007, Math. Comput..
[6] Tsuyoshi Murata,et al. {m , 1934, ACML.
[7] Ricardo G. Durán,et al. A POSTERIORI ERROR ESTIMATORS FOR MIXED APPROXIMATIONS OF EIGENVALUE PROBLEMS , 1999 .
[8] Peter Oswald,et al. Finite element approximation , 1994 .
[9] Daniele Boffi,et al. Finite element approximation of eigenvalue problems , 2010, Acta Numerica.
[10] Martin Vohralík,et al. A unified framework for a posteriori error estimation for the Stokes problem , 2012, Numerische Mathematik.
[11] Carsten Carstensen,et al. Error reduction and convergence for an adaptive mixed finite element method , 2006, Math. Comput..
[12] Daniele Boffi,et al. Optimal convergence of adaptive FEM for eigenvalue clusters in mixed form , 2015, Math. Comput..
[13] Francesca Gardini. Mixed approximation of eigenvalue problems: A superconvergence result , 2009 .
[14] Martin Vohralík,et al. Unified primal formulation-based a priori and a posteriori error analysis of mixed finite element methods , 2010, Math. Comput..
[15] Ricardo H. Nochetto,et al. Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..
[16] Fleurianne Bertrand,et al. A Posteriori Error Estimation for Planar Linear Elasticity by Stress Reconstruction , 2017, Comput. Methods Appl. Math..
[17] J. Oden,et al. A unified approach to a posteriori error estimation using element residual methods , 1993 .
[18] Daniele Boffi,et al. Residual-based a posteriori error estimation for the Maxwell's eigenvalue problem , 2016 .
[19] J. Roßmann,et al. Elliptic Boundary Value Problems in Domains with Point Singularities , 2002 .
[20] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[21] R. Nochetto,et al. Theory of adaptive finite element methods: An introduction , 2009 .
[22] Rolf Stenberg,et al. Postprocessing schemes for some mixed finite elements , 1991 .
[23] Shipeng Mao,et al. An optimally convergent adaptive mixed finite element method , 2008, Numerische Mathematik.
[24] Long Chen,et al. Convergence and optimality of adaptive mixed finite element methods , 2010, Math. Comput..
[25] Zhangxin Chen,et al. On the implementation of mixed methods as nonconforming methods for second-order elliptic problems , 1995 .
[26] Rob P. Stevenson,et al. Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..
[27] Daniele Boffi,et al. A Posteriori Error Estimates for Maxwell’s Eigenvalue Problem , 2019, J. Sci. Comput..
[28] Mark Ainsworth,et al. A Posteriori Error Estimation for Lowest Order Raviart-Thomas Mixed Finite Elements , 2007, SIAM J. Sci. Comput..
[29] Joscha Gedicke,et al. Arnold-Winther Mixed Finite Elements for Stokes Eigenvalue Problems , 2018, SIAM J. Sci. Comput..
[30] Ricardo H. Nochetto,et al. Primer of Adaptive Finite Element Methods , 2011 .
[31] Christian Kreuzer,et al. Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..
[32] D. Boffi,et al. A posteriori error analysis for the mixed Laplace eigenvalue problem: investigations for the BDM‐element , 2019, PAMM.
[33] Shirley Dex,et al. JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .
[34] Carsten Carstensen,et al. Axioms of adaptivity , 2013, Comput. Math. Appl..
[35] Ricardo G. Durán,et al. A Posteriori Error Estimates for the Finite Element Approximation of Eigenvalue Problems , 2003 .
[36] Carsten Carstensen,et al. An optimal adaptive mixed finite element method , 2011, Math. Comput..
[37] Rolf Stenberg,et al. Energy norm a posteriori error estimates for mixed finite element methods , 2006, Math. Comput..
[38] Kwang-Yeon Kim,et al. Guaranteed a posteriori error estimator for mixed finite element methods of elliptic problems , 2012, Appl. Math. Comput..
[39] W. Prager,et al. Approximations in elasticity based on the concept of function space , 1947 .
[40] D. Arnold,et al. Mixed and nonconforming finite element methods : implementation, postprocessing and error estimates , 1985 .
[41] Rüdiger Verfürth,et al. A Posteriori Error Estimation Techniques for Finite Element Methods , 2013 .
[42] Shipeng Mao,et al. A Convergent Nonconforming Adaptive Finite Element Method with Quasi-Optimal Complexity , 2010, SIAM J. Numer. Anal..
[43] Dietmar Gallistl,et al. An optimal adaptive FEM for eigenvalue clusters , 2015, Numerische Mathematik.