Current and future trends in infrared focal plane array technology

Infrared focal plane arrays are a critical component in many of the military and civilian applications for advanced imaging systems. Advanced material growth and etching techniques have made possible the fabrication of infrared detectors in various configurations and in a broad range of wavelengths for a variety of applications. In the last decade, many researchers have explored advances in the processing and growth techniques, which have made it possible to realize complex detector concepts, array architectures and improvements in the producibility of these devices. In this paper, infrared detector materials and structures will be reviewed with emphasis on applicability to designs of focal plane arrays for single and multi-wavebands. Key developments and status of the technology will be presented along with projections and challenges for the continued evolution of the technology.

[1]  A. D. Markum,et al.  VSWIR to VLWIR MBE grown HgCdTe material and detectors for remote sensing applications , 1997 .

[2]  S. J. Tighe,et al.  State of the art of Hg-melt LPE HgCdTe at Santa Barbara Research Center , 1992, Optics & Photonics.

[3]  Michael A. Kinch HDVIP FPA technology at DRS Infrared Technologies , 2001, SPIE Defense + Commercial Sensing.

[4]  Hooman Mohseni,et al.  High-performance type-II InAs/GaSb superlattice photodiodes , 2001, SPIE OPTO.

[5]  Meimei Z. Tidrow,et al.  InGaAs/InGaP quantum dots and nanopillar structures for infrared focal plane array applications , 2004, SPIE Optics + Photonics.

[6]  Pradip Mitra,et al.  Bandgap-Engineering of HgCdTe for Two-Color Ir Detector Arrays BY Movpe , 1997 .

[7]  Marshall J. Cohen,et al.  Room-temperature InGaAs camera for NIR imaging , 1993, Defense, Security, and Sensing.

[8]  Elias Towe,et al.  Photovoltaic quantum-dot infrared detectors , 2000 .

[9]  Patrick Merken,et al.  InGaAs on GaAs extended wavelength linear detector arrays , 2001, SPIE OPTO.

[10]  Thomas Y. Chuh,et al.  Recent developments in infrared and visible imaging for astronomy, defense, and homeland security , 2004, SPIE Optics + Photonics.

[11]  Antoni Rogalski,et al.  Performance limitation of short wavelength infrared InGaAs and HgCdTe photodiodes , 1999 .

[12]  G. W. Pickrell,et al.  Surface morphology control of InAs nanostructures grown on InGaAs/InP , 2003 .

[13]  E. Towe,et al.  Semiconductor quantum-dot nanostructures: Their application in a new class of infrared photodetectors , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[14]  L. O. Bubulac,et al.  Ion implanted junction formation in Hg1−xCdxTe , 1987 .

[15]  Jian V. Li,et al.  Minority carrier diffusion length and lifetime for electrons in a type-II InAs /GaSb superlattice photodiode , 2004 .

[16]  Bruno Gilles,et al.  II–VI quantum dot formation induced by surface energy change of a strained layer , 2003 .

[17]  Luigi Colombo,et al.  Large-volume production of HgCdTe by dipping liquid phase epitaxy , 1994, Defense, Security, and Sensing.

[18]  Gail J. Brown,et al.  InAs/InGaSb superlattices for very long wavelength infrared detection , 2001, SPIE OPTO.

[19]  Vaidya Nathan,et al.  Long-wavelength infrared InAs/InGaSb type-II superlattice photovoltaic detectors , 2001, SPIE OPTO.

[20]  Arthur C. Gossard,et al.  Electrical and optical properties of infrared photodiodes using the InAs/Ga1−xInxSb superlattice in heterojunctions with GaSb , 1996 .

[21]  Melvin R. Kruer,et al.  Infrared color vision: separating objects from backgrounds , 1998, Defense, Security, and Sensing.

[22]  H. R. Vydyanath,et al.  High Performance (Hg,Cd)Te Heterostructure Photodiode Arrays With Improved Radiation Hardening , 1989, Defense, Security, and Sensing.

[23]  H. R. Vydyanath,et al.  High Performance MWIR and LWIR (Hg,Cd)Te Heterostructure Photodiodes , 1986, Optics & Photonics.

[24]  Nibir K. Dhar,et al.  Large-format IRFPA development on silicon , 2004, SPIE Optics + Photonics.

[25]  Jamie D. Phillips,et al.  Evaluation of the fundamental properties of quantum dot infrared detectors , 2002 .

[26]  Darryl L. Smith,et al.  Proposal for strained type II superlattice infrared detectors , 1987 .

[27]  Martin Walther,et al.  unneling effects in InAs/GaInSb superlattice infrared photodiodes , 1997 .

[28]  Marion B. Reine,et al.  Very long wavelength (>15 μm) HgCdTe photodiodes by liquid phase epitaxy , 2004, SPIE Optics + Photonics.

[29]  C. C. Wang Mercury cadmium telluride junctions grown by liquid phase epitaxy , 1991 .

[30]  Nibir K. Dhar,et al.  Design and development of high-performance radiation-hardened antireflection coatings for LWIR HgCdTe focal plane arrays , 2004, SPIE Optics + Photonics.

[31]  J. Seufert,et al.  Single-electron charging of a self-assembled II–VI quantum dot , 2003 .

[32]  C. Foucher,et al.  LPE growth of Hg1−xCdxTe on Cd1−yZnyTe substrates , 1985 .

[33]  Vaidya Nathan,et al.  HgCdTe/Si materials for long wavelength infrared detectors , 2004 .

[34]  Lester J. Kozlowski,et al.  Recent advances in staring hybrid focal plane arrays: comparison of HgCdTe, InGaAs, and GaAs/AlGaAs detector technologies , 1994, Optics & Photonics.

[35]  Majid Zandian,et al.  Planar p‐on‐n HgCdTe heterostructure photovoltaic detectors , 1993 .

[36]  Pradip Mitra,et al.  Progress in MOVPE of HgCdTe for advanced infrared detectors , 1998 .

[37]  S. Deleonibus Devices architectures and materials for nanoCMOS at the end of the roadmap and beyond , 2004 .

[38]  Themis Parodos,et al.  Advances in liquid phase epitaxial growth of Hg1-xCdxTe for SWIR through VLWIR photodiodes , 2004, SPIE Optics + Photonics.

[39]  Chris Van Hoof,et al.  Extended wavelength InGaAs on GaAs using InAlAs buffer for back-side-illuminated short-wave infrared detectors , 2003 .

[40]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[41]  Jeffrey D. Beck,et al.  The HgCdTe electron avalanche photodiode , 2004, 2006 Digest of the LEOS Summer Topical Meetings.

[42]  Yajun Wei,et al.  Type II InAs/GaSb superlattice photovoltaic detectors with cutoff wavelength approaching 32 μm , 2002 .

[43]  Walker,et al.  Temperature dependence of the band overlap in InAs/GaSb structures. , 1995, Physical review. B, Condensed matter.

[44]  Michael A. Kinch Fundamental physics of infrared detector materials , 2000 .

[45]  Latika S. R. Becker Multicolor LWIR focal plane array technology for space- and ground-based applications , 2004, SPIE Optics + Photonics.

[46]  L. O. Bubulac Ion implantation and diffusion for electrical junction formation in HgCdTe , 1991, Defense, Security, and Sensing.

[47]  Nibir K. Dhar,et al.  Long wavelength infrared, molecular beam epitaxy, HgCdTe-on-Si diode performance , 2004 .

[48]  Latika S. R. Becker,et al.  High-operability SWIR HgCdTe focal plane arrays , 2003, SPIE Optics + Photonics.

[49]  Mike Davis,et al.  Advanced FPA technology development at CMC Electronics , 2004, SPIE Optics + Photonics.