Current and future trends in infrared focal plane array technology
暂无分享,去创建一个
[1] A. D. Markum,et al. VSWIR to VLWIR MBE grown HgCdTe material and detectors for remote sensing applications , 1997 .
[2] S. J. Tighe,et al. State of the art of Hg-melt LPE HgCdTe at Santa Barbara Research Center , 1992, Optics & Photonics.
[3] Michael A. Kinch. HDVIP FPA technology at DRS Infrared Technologies , 2001, SPIE Defense + Commercial Sensing.
[4] Hooman Mohseni,et al. High-performance type-II InAs/GaSb superlattice photodiodes , 2001, SPIE OPTO.
[5] Meimei Z. Tidrow,et al. InGaAs/InGaP quantum dots and nanopillar structures for infrared focal plane array applications , 2004, SPIE Optics + Photonics.
[6] Pradip Mitra,et al. Bandgap-Engineering of HgCdTe for Two-Color Ir Detector Arrays BY Movpe , 1997 .
[7] Marshall J. Cohen,et al. Room-temperature InGaAs camera for NIR imaging , 1993, Defense, Security, and Sensing.
[8] Elias Towe,et al. Photovoltaic quantum-dot infrared detectors , 2000 .
[9] Patrick Merken,et al. InGaAs on GaAs extended wavelength linear detector arrays , 2001, SPIE OPTO.
[10] Thomas Y. Chuh,et al. Recent developments in infrared and visible imaging for astronomy, defense, and homeland security , 2004, SPIE Optics + Photonics.
[11] Antoni Rogalski,et al. Performance limitation of short wavelength infrared InGaAs and HgCdTe photodiodes , 1999 .
[12] G. W. Pickrell,et al. Surface morphology control of InAs nanostructures grown on InGaAs/InP , 2003 .
[13] E. Towe,et al. Semiconductor quantum-dot nanostructures: Their application in a new class of infrared photodetectors , 2000, IEEE Journal of Selected Topics in Quantum Electronics.
[14] L. O. Bubulac,et al. Ion implanted junction formation in Hg1−xCdxTe , 1987 .
[15] Jian V. Li,et al. Minority carrier diffusion length and lifetime for electrons in a type-II InAs /GaSb superlattice photodiode , 2004 .
[16] Bruno Gilles,et al. II–VI quantum dot formation induced by surface energy change of a strained layer , 2003 .
[17] Luigi Colombo,et al. Large-volume production of HgCdTe by dipping liquid phase epitaxy , 1994, Defense, Security, and Sensing.
[18] Gail J. Brown,et al. InAs/InGaSb superlattices for very long wavelength infrared detection , 2001, SPIE OPTO.
[19] Vaidya Nathan,et al. Long-wavelength infrared InAs/InGaSb type-II superlattice photovoltaic detectors , 2001, SPIE OPTO.
[20] Arthur C. Gossard,et al. Electrical and optical properties of infrared photodiodes using the InAs/Ga1−xInxSb superlattice in heterojunctions with GaSb , 1996 .
[21] Melvin R. Kruer,et al. Infrared color vision: separating objects from backgrounds , 1998, Defense, Security, and Sensing.
[22] H. R. Vydyanath,et al. High Performance (Hg,Cd)Te Heterostructure Photodiode Arrays With Improved Radiation Hardening , 1989, Defense, Security, and Sensing.
[23] H. R. Vydyanath,et al. High Performance MWIR and LWIR (Hg,Cd)Te Heterostructure Photodiodes , 1986, Optics & Photonics.
[24] Nibir K. Dhar,et al. Large-format IRFPA development on silicon , 2004, SPIE Optics + Photonics.
[25] Jamie D. Phillips,et al. Evaluation of the fundamental properties of quantum dot infrared detectors , 2002 .
[26] Darryl L. Smith,et al. Proposal for strained type II superlattice infrared detectors , 1987 .
[27] Martin Walther,et al. unneling effects in InAs/GaInSb superlattice infrared photodiodes , 1997 .
[28] Marion B. Reine,et al. Very long wavelength (>15 μm) HgCdTe photodiodes by liquid phase epitaxy , 2004, SPIE Optics + Photonics.
[29] C. C. Wang. Mercury cadmium telluride junctions grown by liquid phase epitaxy , 1991 .
[30] Nibir K. Dhar,et al. Design and development of high-performance radiation-hardened antireflection coatings for LWIR HgCdTe focal plane arrays , 2004, SPIE Optics + Photonics.
[31] J. Seufert,et al. Single-electron charging of a self-assembled II–VI quantum dot , 2003 .
[32] C. Foucher,et al. LPE growth of Hg1−xCdxTe on Cd1−yZnyTe substrates , 1985 .
[33] Vaidya Nathan,et al. HgCdTe/Si materials for long wavelength infrared detectors , 2004 .
[34] Lester J. Kozlowski,et al. Recent advances in staring hybrid focal plane arrays: comparison of HgCdTe, InGaAs, and GaAs/AlGaAs detector technologies , 1994, Optics & Photonics.
[35] Majid Zandian,et al. Planar p‐on‐n HgCdTe heterostructure photovoltaic detectors , 1993 .
[36] Pradip Mitra,et al. Progress in MOVPE of HgCdTe for advanced infrared detectors , 1998 .
[37] S. Deleonibus. Devices architectures and materials for nanoCMOS at the end of the roadmap and beyond , 2004 .
[38] Themis Parodos,et al. Advances in liquid phase epitaxial growth of Hg1-xCdxTe for SWIR through VLWIR photodiodes , 2004, SPIE Optics + Photonics.
[39] Chris Van Hoof,et al. Extended wavelength InGaAs on GaAs using InAlAs buffer for back-side-illuminated short-wave infrared detectors , 2003 .
[40] N. Fang,et al. SubDiffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.
[41] Jeffrey D. Beck,et al. The HgCdTe electron avalanche photodiode , 2004, 2006 Digest of the LEOS Summer Topical Meetings.
[42] Yajun Wei,et al. Type II InAs/GaSb superlattice photovoltaic detectors with cutoff wavelength approaching 32 μm , 2002 .
[43] Walker,et al. Temperature dependence of the band overlap in InAs/GaSb structures. , 1995, Physical review. B, Condensed matter.
[44] Michael A. Kinch. Fundamental physics of infrared detector materials , 2000 .
[45] Latika S. R. Becker. Multicolor LWIR focal plane array technology for space- and ground-based applications , 2004, SPIE Optics + Photonics.
[46] L. O. Bubulac. Ion implantation and diffusion for electrical junction formation in HgCdTe , 1991, Defense, Security, and Sensing.
[47] Nibir K. Dhar,et al. Long wavelength infrared, molecular beam epitaxy, HgCdTe-on-Si diode performance , 2004 .
[48] Latika S. R. Becker,et al. High-operability SWIR HgCdTe focal plane arrays , 2003, SPIE Optics + Photonics.
[49] Mike Davis,et al. Advanced FPA technology development at CMC Electronics , 2004, SPIE Optics + Photonics.