Silicon-Organic Hybrid (SOH) and Plasmonic-Organic Hybrid (POH) Integration

Silicon photonics offers tremendous potential for inexpensive high-yield photonic-electronic integration. Besides conventional dielectric waveguides, plasmonic structures can also be efficiently realized on the silicon photonic platform, reducing device footprint by more than an order of magnitude. However, neither silicon nor metals exhibit appreciable second-order optical nonlinearities, thereby making efficient electro-optic modulators challenging to realize. These deficiencies can be overcome by the concepts of silicon-organic hybrid (SOH) and plasmonic-organic hybrid integration, which combine SOI waveguides and plasmonic nanostructures with organic electro-optic cladding materials.

[1]  C. Koos,et al.  Femtojoule modulation and frequency comb generation in silicon-organic hybrid (SOH) devices , 2014, 2014 16th International Conference on Transparent Optical Networks (ICTON).

[2]  J P Salvestrini,et al.  Analysis and Control of the DC Drift in LiNbO$_{3}$-Based Mach–Zehnder Modulators , 2011, Journal of Lightwave Technology.

[3]  M. Winter,et al.  Error Vector Magnitude as a Performance Measure for Advanced Modulation Formats , 2012, IEEE Photonics Technology Letters.

[4]  H. Atwater,et al.  Unity-order index change in transparent conducting oxides at visible frequencies. , 2010, Nano letters (Print).

[5]  A. Scherer,et al.  A Hybrid Electrooptic Microring Resonator-Based $1 \times 4\times 1$ ROADM for Wafer Scale Optical Interconnects , 2009, Journal of Lightwave Technology.

[6]  Wolfgang Freude,et al.  High-Speed, Low Drive-Voltage Silicon-Organic Hybrid Modulator Based on a Binary-Chromophore Electro-Optic Material , 2014, Journal of Lightwave Technology.

[7]  Raluca Dinu,et al.  High-speed plasmonic phase modulators , 2014, Nature Photonics.

[8]  A. F. Tillack,et al.  Electro-Optic Material Design Criteria Derived from Condensed Matter Simulations Using the Level-of-Detail Coarse-Graining Approach , 2015 .

[9]  Wolfgang Freude,et al.  Silicon-organic hybrid phase shifter based on a slot waveguide with a liquid-crystal cladding. , 2012, Optics express.

[10]  Takashi Mizuochi,et al.  Forward error correction for 100 G transport networks , 2010, IEEE Communications Magazine.

[11]  Ruimin Xu,et al.  Benzocyclobutene barrier layer for suppressing conductance in nonlinear optical devices during electric field poling , 2014 .

[12]  Larry R Dalton,et al.  Electric field poled organic electro-optic materials: state of the art and future prospects. , 2010, Chemical reviews.

[13]  Wolfgang Freude,et al.  Silicon-on-Insulator Modulators for Next-Generation 100 Gbit/s-Ethernet , 2007 .

[14]  D Zhang,et al.  Unprecedented highest electro-optic coefficient of 226 pm/V for electro-optic polymer/TiO₂ multilayer slot waveguide modulators. , 2014, Optics express.

[15]  R. Soref,et al.  Electrooptical effects in silicon , 1987 .

[16]  David A B Miller,et al.  Energy consumption in optical modulators for interconnects. , 2012, Optics express.

[17]  Wolfgang Freude,et al.  Surface plasmon polariton absorption modulator. , 2011, Optics express.

[18]  R. Norwood,et al.  Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients , 2007 .

[19]  Lewis E Johnson,et al.  Optimizing calculations of electronic excitations and relative hyperpolarizabilities of electrooptic chromophores. , 2014, Accounts of chemical research.

[20]  J. Leuthold,et al.  Silicon-organic hybrid (SOH) frequency comb sources for terabit/s data transmission. , 2014, Optics express.

[21]  L. Sekaric,et al.  Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator. , 2007, Optics express.

[22]  David Hillerkuss,et al.  All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale , 2015, Nature Photonics.

[23]  J. Leuthold,et al.  Low Power Mach–Zehnder Modulator in Silicon-Organic Hybrid Technology , 2013, IEEE Photonics Technology Letters.

[24]  Jinzhong Yu,et al.  High-speed silicon modulator with band equalization. , 2014, Optics letters.

[25]  C. Koos,et al.  64 GBd operation of a silicon-organic hybrid modulator at elevated temperature , 2015, 2015 Optical Fiber Communications Conference and Exhibition (OFC).

[26]  C. Koos,et al.  Silicon-Organic Hybrid (SOH) and Plasmonic-Organic Hybrid (POH) Integration , 2015, Journal of Lightwave Technology.

[27]  Bruce H. Robinson,et al.  Matrix-Assisted Poling of Monolithic Bridge-Disubstituted Organic NLO Chromophores , 2014 .

[28]  C. Koos,et al.  10 GBd SOH modulator directly driven by an FPGA without electrical amplification , 2014, 2014 The European Conference on Optical Communication (ECOC).

[29]  M. Lauermann,et al.  Low-power silicon-organic hybrid (SOH) modulators for advanced modulation formats. , 2014, Optics express.

[30]  Guo-Qiang Lo,et al.  Ultralow drive voltage silicon traveling-wave modulator. , 2012, Optics express.

[31]  Qianfan Xu,et al.  Guiding and confining light in void nanostructure. , 2004, Optics letters.

[32]  Jun Ushida,et al.  25 GHz operation of silicon optical modulator with projection MOS structure , 2010, 2010 Conference on Optical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference.

[33]  Michael Hochberg,et al.  Low-loss asymmetric strip-loaded slot waveguides in silicon-on-insulator , 2011 .

[34]  Raluca Dinu,et al.  Silicon-Organic Hybrid Electro-Optical Devices , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[35]  C. Koos,et al.  100 Gbit/s OOK using a silicon-organic hybrid (SOH) modulator , 2015, 2015 European Conference on Optical Communication (ECOC).

[36]  Larry R. Dalton,et al.  Theory-inspired development of new nonlinear optical materials and their integration into silicon photonic circuits and devices , 2010 .

[37]  Larry R. Dalton,et al.  Guest-Host Cooperativity in Organic Materials Greatly Enhances the Nonlinear Optical Response , 2008 .

[38]  Chongjin Xie,et al.  112-Gb/s monolithic PDM-QPSK modulator in silicon. , 2012, Optics express.

[39]  Wolfgang Freude,et al.  DAC-Less Amplifier-Less Generation and Transmission of QAM Signals Using Sub-Volt Silicon-Organic Hybrid Modulators , 2015, Journal of Lightwave Technology.

[40]  Wolfgang Freude,et al.  Femtojoule electro-optic modulation using a silicon–organic hybrid device , 2015, Light: Science & Applications.

[41]  C. Koos,et al.  Silicon-Organic Hybrid MZI Modulator Generating OOK, BPSK and 8-ASK Signals for Up to 84 Gbit/s , 2013, IEEE Photonics Journal.

[42]  C. Koos,et al.  First silicon-organic hybrid laser at telecommunication wavelengths , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[43]  X. Zhang,et al.  Ultra-compact silicon nanophotonic modulator with broadband response , 2012 .

[44]  Wolfgang Freude,et al.  Optical absorption in silicon layers in the presence of charge inversion/accumulation or ion implantation , 2013 .

[45]  D. Hillerkuss,et al.  Plasmonic Mach-Zehnder modulator with >70 GHz electrical bandwidth demonstrating 90 Gbit/s 4-ASK , 2015, 2015 Optical Fiber Communications Conference and Exhibition (OFC).

[46]  D Hillerkuss,et al.  42.7 Gbit/s electro-optic modulator in silicon technology. , 2011, Optics express.

[47]  Larry R Dalton,et al.  Theory-inspired development of organic electro-optic materials. , 2010, Accounts of chemical research.

[48]  C. Koos,et al.  Low-Loss Silicon Strip-to-Slot Mode Converters , 2013, IEEE Photonics Journal.

[49]  P Sullivan,et al.  Demonstration of a low V pi L modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides. , 2010, Optics express.

[50]  C. Koos,et al.  Plasmonic-organic hybrid (POH) modulators for OOK and BPSK signaling at 40 Gbit/s , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[51]  T. J. Sleboda,et al.  High Contrast 40gbit/s Optical Modulation in Silicon References and Links , 2022 .

[52]  S. Chandrasekhar,et al.  Monolithic Silicon Photonic Integrated Circuits for Compact 100 $^{+}$Gb/s Coherent Optical Receivers and Transmitters , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[53]  Raluca Dinu,et al.  100 GHz silicon–organic hybrid modulator , 2014, Light: Science & Applications.

[54]  Juerg Leuthold,et al.  Digitally Controlled Phase Shifter Using an SOI Slot Waveguide With Liquid Crystal Infiltration , 2015, IEEE Photonics Technology Letters.

[55]  David J. Thomson,et al.  Silicon optical modulators , 2010 .

[56]  Jie Sun,et al.  Open Foundry Platform for High-performance Electronic-photonic Integration References and Links , 2022 .

[57]  Wolfgang Freude,et al.  40 GBd 16QAM Signaling at 160 Gb/s in a Silicon-Organic Hybrid Modulator , 2015, Journal of Lightwave Technology.

[58]  M. Watts,et al.  Low-Voltage, Compact, Depletion-Mode, Silicon Mach–Zehnder Modulator , 2010, IEEE Journal of Selected Topics in Quantum Electronics.