Evidence for Cu(I)-thiolate ligation and prediction of a putative copper-binding site in the Escherichia coli NADH dehydrogenase-2.

[1]  I. G. Young,et al.  Characterization of the respiratory NADH dehydrogenase of Escherichia coli and reconstitution of NADH oxidase in ndh mutant membrane vesicles. , 1981, Biochemistry.

[2]  M. Stillman,et al.  Luminescence decay from copper(I) complexes of metallothionein , 1988 .

[3]  G. Vonheijne,et al.  Control of topology and mode of assembly of a polytopic membrane protein by positively charged residues , 1989, Nature.

[4]  K. Münger,et al.  Luminescence emission from Neurospora copper metallothionein. Time-resolved studies. , 1989, The Biochemical journal.

[5]  J. Szymańska,et al.  Luminescent metallothioneins: Emission properties of copper, silver, gold and platinum complexes of MT , 1989 .

[6]  G. Vriend,et al.  Rubredoxin reductase of Pseudomonas oleovorans. Structural relationship to other flavoprotein oxidoreductases based on one NAD and two FAD fingerprints. , 1990, Journal of molecular biology.

[7]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[8]  D. Hamer,et al.  Spectroscopic characterization of the copper(I)‐thiolate cluster in the DNA‐binding domain of yeast ACE1 transcription factor , 1991, FEBS letters.

[9]  B. Rost,et al.  Improved prediction of protein secondary structure by use of sequence profiles and neural networks. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[10]  B. Rost,et al.  Prediction of protein secondary structure at better than 70% accuracy. , 1993, Journal of molecular biology.

[11]  R. Gennis,et al.  Energetic efficiency of Escherichia coli: effects of mutations in components of the aerobic respiratory chain , 1993, Journal of bacteriology.

[12]  R. Gennis,et al.  Demonstration of separate genetic loci encoding distinct membrane-bound respiratory NADH dehydrogenases in Escherichia coli , 1993, Journal of bacteriology.

[13]  B. Rost,et al.  Conservation and prediction of solvent accessibility in protein families , 1994, Proteins.

[14]  D. Cox,et al.  Wilson disease and Menkes disease: new handles on heavy-metal transport. , 1994, Trends in genetics : TIG.

[15]  P Argos,et al.  Prediction of transmembrane segments in proteins utilising multiple sequence alignments. , 1994, Journal of molecular biology.

[16]  R. Farías,et al.  Sites of electron transfer to membrane-bound copper and hydroperoxide-induced damage in the respiratory chain of Escherichia coli. , 1995, Archives of biochemistry and biophysics.

[17]  B. Rost,et al.  Transmembrane helices predicted at 95% accuracy , 1995, Protein science : a publication of the Protein Society.

[18]  C. Bellamacina The nicotinamide dinucleotide binding motif: a comparison of nucleotide binding proteins , 1996, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[19]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[20]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.

[21]  D. Thiele,et al.  Copper-binding motifs in catalysis, transport, detoxification and signaling. , 1997, Chemistry & biology.

[22]  G. Tusnády,et al.  Principles governing amino acid composition of integral membrane proteins: application to topology prediction. , 1998, Journal of molecular biology.

[23]  Geoffrey J. Barton,et al.  JPred : a consensus secondary structure prediction server , 1999 .

[24]  T. O’Halloran,et al.  Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. , 1999, Science.

[25]  Robert D. Finn,et al.  Pfam 3.1: 1313 multiple alignments and profile HMMs match the majority of proteins , 1999, Nucleic Acids Res..

[26]  Christopher E. Jones,et al.  Copper chaperones: function, structure and copper-binding properties , 1999, JBIC Journal of Biological Inorganic Chemistry.

[27]  R. Farías,et al.  Characterization of an NADH-linked cupric reductase activity from the Escherichia coli respiratory chain. , 1999, Archives of biochemistry and biophysics.

[28]  J. Mercer,et al.  Copper Transport and Its Disorders , 1999, Advances in Experimental Medicine and Biology.

[29]  Amos Bairoch,et al.  The PROSITE database, its status in 1999 , 1999, Nucleic Acids Res..

[30]  G J Barton,et al.  Evaluation and improvement of multiple sequence methods for protein secondary structure prediction , 1999, Proteins.

[31]  M. Finel,et al.  Purification of the 45 kDa, membrane bound NADH dehydrogenase of Escherichia coli (NDH‐2) and analysis of its interaction with ubiquinone analogues , 2000, FEBS letters.

[32]  D. Huffman,et al.  Energetics of Copper Trafficking between the Atx1 Metallochaperone and the Intracellular Copper Transporter, Ccc2* , 2000, The Journal of Biological Chemistry.

[33]  M. Linder,et al.  Copper and genomic stability in mammals. , 2001, Mutation research.