Accuracy of Hybrid Lattice Boltzmann/Finite Difference Schemes for Reaction-Diffusion Systems

In this article we construct a hybrid model by spatially coupling a lattice Boltzmann model (LBM) to a finite difference discretization of the partial differential equation (PDE) for reaction-diffusion systems. Because the LBM has more variables (the particle distribution functions) than the PDE (only the particle density), we have a one-to-many mapping problem from the PDE to the LBM domain at the interface. We perform this mapping using either results from the Chapman–Enskog expansion or a pointwise iterative scheme that approximates these analytical relations numerically. Most importantly, we show that the global spatial discretization error of the hybrid model is one order less accurate than the local error made at the interface. We derive closed expressions for the spatial discretization error at steady state and verify them numerically for several examples on the one-dimensional domain.

[1]  Daniel M. Tartakovsky,et al.  Algorithm refinement for stochastic partial differential equations. , 2003 .

[2]  Daniel M. Tartakovsky,et al.  Algorithm refinement for stochastic partial differential equations: I. linear diffusion , 2002 .

[3]  D. Roose,et al.  Initialization of a Lattice Boltzmann Model with Constrained Runs (Extended Version) , 2005 .

[4]  Dimitri J. Mavriplis,et al.  Multigrid solution of the steady-state lattice Boltzmann equation , 2006 .

[5]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[6]  O. Filippova,et al.  Grid Refinement for Lattice-BGK Models , 1998 .

[7]  N. Hadjiconstantinou Regular Article: Hybrid Atomistic–Continuum Formulations and the Moving Contact-Line Problem , 1999 .

[8]  Ernst Rank,et al.  A Multigrid-Solver for the Discrete Boltzmann Equation , 2002 .

[9]  Shi Jin,et al.  Physical symmetry and lattice symmetry in the lattice Boltzmann method , 1997 .

[10]  Dab,et al.  Lattice-gas automata for coupled reaction-diffusion equations. , 1991, Physical review letters.

[11]  Taehun Lee,et al.  An Eulerian description of the streaming process in the lattice Boltzmann equation , 2003 .

[12]  L. Pareschi,et al.  HYBRID MULTISCALE METHODS I. HYPERBOLIC RELAXATION PROBLEMS∗ , 2006 .

[13]  Ioannis G. Kevrekidis,et al.  Coarse-grained numerical bifurcation analysis of lattice Boltzmann models , 2005 .

[14]  Martin Rheinländer A Consistent Grid Coupling Method for Lattice-Boltzmann Schemes , 2005 .

[15]  A. Ladd,et al.  Simulation of low-Reynolds-number flow via a time-independent lattice-Boltzmann method. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  Wim Vanroose,et al.  Numerical and Analytical Spatial Coupling of a Lattice Boltzmann Model and a Partial Differential Equation , 2006 .

[17]  Ioannis G. Kevrekidis,et al.  Constraint-defined manifolds: A legacy code approach to low-dimensional computation , 2005 .

[18]  Massimo Bernaschi,et al.  Accelerated Lattice Boltzmann Schemes for Steady-State Flow Simulations , 2001, J. Sci. Comput..

[19]  Shiyi Chen,et al.  Lattice Boltzmann computations for reaction‐diffusion equations , 1993 .

[20]  Patrick Le Tallec,et al.  Coupling Boltzmann and Navier-Stokes Equations by Half Fluxes , 1997 .

[21]  Peter M. A. Sloot,et al.  Finite-Difference Lattice-BGK methods on nested grids , 2000 .

[22]  Alejandro L. Garcia,et al.  Adaptive Mesh and Algorithm Refinement Using Direct Simulation Monte Carlo , 1999 .

[23]  Pierre Lallemand,et al.  Consistent initial conditions for lattice Boltzmann simulations , 2006 .

[24]  Alfonso Caiazzo,et al.  Analysis of Lattice Boltzmann Initialization Routines , 2005 .

[25]  Giacomo Dimarco,et al.  Hybrid multiscale methods for hyperbolic problems I. Hyperbolic relaxation problems , 2006 .

[26]  M. Junk,et al.  Asymptotic analysis of the lattice Boltzmann equation , 2005 .

[27]  Pierre Leone,et al.  Coupling a Lattice Boltzmann and a Finite Difference Scheme , 2004, International Conference on Computational Science.

[28]  Raoyang Zhang,et al.  COMPUTING STEADY STATE FLOWS WITH AN ACCELERATED LATTICE BOLTZMANN TECHNIQUE , 2002 .

[29]  Michael Junk,et al.  A finite difference interpretation of the lattice Boltzmann method , 2001 .

[30]  P. Ahlrichs,et al.  Simulation of a single polymer chain in solution by combining lattice Boltzmann and molecular dynamics , 1999, cond-mat/9905183.

[31]  Bastien Chopard,et al.  Cellular Automata and Lattice Boltzmann Techniques: an Approach to Model and Simulate Complex Systems , 2002, Adv. Complex Syst..

[32]  Steven A. Orszag,et al.  Scalings in diffusion-driven reactionA+B→C: Numerical simulations by lattice BGK models , 1995 .

[33]  Ernst Rank,et al.  Implicit discretization and nonuniform mesh refinement approaches for FD discretizations of LBGK Models , 1998 .

[34]  Ioannis G. Kevrekidis,et al.  Projecting to a Slow Manifold: Singularly Perturbed Systems and Legacy Codes , 2005, SIAM J. Appl. Dyn. Syst..

[35]  Pierre Leone,et al.  A Hybrid Lattice Boltzmann Finite Difference Scheme for the Diffusion Equation , 2006 .

[36]  O. Filippova,et al.  Acceleration of Lattice-BGK schemes with grid refinement , 2000 .

[37]  Y. Qian,et al.  Lattice BGK Models for Navier-Stokes Equation , 1992 .

[38]  D. Roose,et al.  Acceleration of lattice Boltzmann models through state extrapolation: a reaction--diffusion example , 2008 .

[39]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .