Recent advance in MXenes: A promising 2D material for catalysis, sensor and chemical adsorption

Abstract MXenes, a new, very recently emerging family of two-dimensional (2D) early transition metal carbides and/or nitrides, has attracted a great influence in the fields of physics, material science, chemistry, and nanotechnology. In this review, their synthesis, compelling physical, chemical, as well as their various potential applications in catalysis, sensors and adsorption are highlighted. First, the synthesis, structural variety, and chemical and physical properties are summarized. Then the electroactivity, durability, ease of functionalization of MXenes toward electrocatalysis and photocatalysis applications are introduced. The specific properties of metallic conductivity, biocompatibility, hydrophilic surface, and 2D layered atomic structure that make MXenes promising candidates in sensing of rapid, easy, and label-free detection are consequently discussed. Finally, how MXenes could be considered as ideal adsorbents due to the advantages of large surface area and abundant active sites is underlined. Promising theoretical calculations and first remarkable performances in these applications are also highlighted.

[1]  Hui Pan Ultra-high electrochemical catalytic activity of MXenes , 2016, Scientific Reports.

[2]  Fengnian Xia,et al.  Recent Advances in Two-Dimensional Materials beyond Graphene. , 2015, ACS nano.

[3]  Chuanxiang Zhang,et al.  Synthesis and electrochemical performance of Ti3C2Tx with hydrothermal process , 2016, Electronic Materials Letters.

[4]  Claudio Canale,et al.  Colloidal Synthesis of Quantum Confined Single Crystal CsPbBr3 Nanosheets with Lateral Size Control up to the Micrometer Range , 2016, Journal of the American Chemical Society.

[5]  Chenhui Yang,et al.  A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2 , 2015 .

[6]  B. T. King,et al.  A nanoporous two-dimensional polymer by single-crystal-to-single-crystal photopolymerization. , 2014, Nature chemistry.

[7]  Yury Gogotsi,et al.  New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. , 2013, Journal of the American Chemical Society.

[8]  Wenjie Shen,et al.  Morphology-dependent nanocatalysts: rod-shaped oxides. , 2014, Chemical Society reviews.

[9]  Hua Zhang,et al.  Two-dimensional transition metal dichalcogenide nanosheet-based composites. , 2015, Chemical Society reviews.

[10]  Linggang Zhu,et al.  MXene: a promising photocatalyst for water splitting , 2016 .

[11]  Zachary D. Hood,et al.  Titania Composites with 2 D Transition Metal Carbides as Photocatalysts for Hydrogen Production under Visible-Light Irradiation. , 2016, ChemSusChem.

[12]  Y. Ouyang,et al.  Hydrogen storage of beryllium adsorbed on graphene doping with boron: First-principles calculations , 2012 .

[13]  John W. Connell,et al.  Soluble, Exfoliated Hexagonal Boron Nitride Nanosheets , 2010 .

[14]  Zhiyuan Zeng,et al.  Metal dichalcogenide nanosheets: preparation, properties and applications. , 2013, Chemical Society reviews.

[15]  Hua Zhang,et al.  Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials , 2015, Nature Communications.

[16]  A. Du,et al.  2D MXenes: A New Family of Promising Catalysts for the Hydrogen Evolution Reaction , 2017 .

[17]  X. Tao,et al.  Pillared Structure Design of MXene with Ultralarge Interlayer Spacing for High-Performance Lithium-Ion Capacitors. , 2017, ACS nano.

[18]  E. Lægsgaard,et al.  The importance of bulk Ti3+ defects in the oxygen chemistry on titania surfaces. , 2011, Journal of the American Chemical Society.

[19]  M. Barsoum,et al.  Atomically Resolved Structural and Chemical Investigation of Single MXene Sheets. , 2015, Nano letters.

[20]  G. Kubas Dihydrogen complexes as prototypes for the coordination chemistry of saturated molecules , 2007, Proceedings of the National Academy of Sciences.

[21]  Yury Gogotsi,et al.  Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). , 2016, Nanoscale.

[22]  S. Du,et al.  A Two-Dimensional Zirconium Carbide by Selective Etching of Al3C3 from Nanolaminated Zr3Al3C5. , 2016, Angewandte Chemie.

[23]  Q. Peng,et al.  Synthesis of urchin-like rutile titania carbon nanocomposites by iron-facilitated phase transformation of MXene for environmental remediation , 2016 .

[24]  Q. Peng,et al.  Synthesis of Nanoflower-Shaped MXene Derivative with Unexpected Catalytic Activity for Dehydrogenation of Sodium Alanates. , 2017, ACS applied materials & interfaces.

[25]  Qing Tang,et al.  Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. , 2012, Journal of the American Chemical Society.

[26]  H. Alshareef,et al.  Novel amperometric glucose biosensor based on MXene nanocomposite KAUST Repository , 2017 .

[27]  Xinsheng Peng,et al.  Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chromium(VI) from water. , 2015, ACS applied materials & interfaces.

[28]  Bo Xu,et al.  Investigations on V2C and V2CX2 (X = F, OH) Monolayer as a Promising Anode Material for Li Ion Batteries from First-Principles Calculations , 2014 .

[29]  Song Jin,et al.  Efficient Electrocatalytic and Photoelectrochemical Hydrogen Generation Using MoS2 and Related Compounds , 2016 .

[30]  Guodong Zou,et al.  Theoretical interpretation on lead adsorption behavior of new two-dimensional transition metal carbides and nitrides , 2016 .

[31]  M. Wörle,et al.  Gram-scale synthesis of two-dimensional polymer crystals and their structure analysis by X-ray diffraction. , 2014, Nature chemistry.

[32]  Yuan Peng,et al.  Metal-organic framework nanosheets as building blocks for molecular sieving membranes , 2014, Science.

[33]  B. Li,et al.  Porous Metal-Organic Frameworks: Promising Materials for Methane Storage , 2016 .

[34]  Baohui Zhang,et al.  The role of terminations and coordination atoms on the pseudocapacitance of titanium carbonitride monolayers. , 2016, Physical chemistry chemical physics : PCCP.

[35]  Jinlan Wang,et al.  Transition Metal‐Promoted V2CO2 (MXenes): A New and Highly Active Catalyst for Hydrogen Evolution Reaction , 2016, Advanced science.

[36]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[37]  Peng Wang,et al.  MXene Ti3C2: An Effective 2D Light-to-Heat Conversion Material. , 2017, ACS nano.

[38]  S. Du,et al.  Loading Actinides in Multilayered Structures for Nuclear Waste Treatment: The First Case Study of Uranium Capture with Vanadium Carbide MXene. , 2016, ACS applied materials & interfaces.

[39]  A. Jastrzębska Biological Activity and Bio-Sorption Properties of the Ti2C Studied by Means of Zeta Potential and SEM , 2017 .

[40]  Q. Peng,et al.  Heavy-Metal Adsorption Behavior of Two-Dimensional Alkalization-Intercalated MXene by First-Principles Calculations , 2015 .

[41]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Pierre-Louis Taberna,et al.  High capacitance of surface-modified 2D titanium carbide in acidic electrolyte , 2014 .

[43]  Chang E. Ren,et al.  Flexible and conductive MXene films and nanocomposites with high capacitance , 2014, Proceedings of the National Academy of Sciences.

[44]  C. Zhi,et al.  Ultrathin MXene‐Micropattern‐Based Field‐Effect Transistor for Probing Neural Activity , 2016, Advanced materials.

[45]  Michel W. Barsoum,et al.  Elastic and Mechanical Properties of the MAX Phases , 2011 .

[46]  Hao Yu,et al.  Hybrids of Two-Dimensional Ti3C2 and TiO2 Exposing {001} Facets toward Enhanced Photocatalytic Activity. , 2016, ACS applied materials & interfaces.

[47]  Mohammad Khazaei,et al.  Two-dimensional molybdenum carbides: potential thermoelectric materials of the MXene family. , 2014, Physical chemistry chemical physics : PCCP.

[48]  Aijun Du,et al.  Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production , 2017, Nature Communications.

[49]  A. L. Ivanovskii,et al.  Graphene-like titanium carbides and nitrides Tin+1Cn, Tin+1Nn (n = 1, 2, and 3) from de-intercalated MAX phases: First-principles probing of their structural, electronic properties and relative stability , 2012 .

[50]  Baozhong Liu,et al.  Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. , 2014, Journal of the American Chemical Society.

[51]  Ning Kang,et al.  Large-area high-quality 2D ultrathin Mo2C superconducting crystals. , 2015, Nature materials.

[52]  Freek Kapteijn,et al.  Metal-organic framework nanosheets in polymer composite materials for gas separation , 2014, Nature materials.

[53]  Y. Chen,et al.  Atomically Thin Boron Nitride: Unique Properties and Applications , 2016, 1605.01136.

[54]  Yury Gogotsi,et al.  25th Anniversary Article: MXenes: A New Family of Two‐Dimensional Materials , 2014, Advanced materials.

[55]  Xu Xiao,et al.  Synthesis and Charge Storage Properties of Hierarchical Niobium Pentoxide/Carbon/Niobium Carbide (MXene) Hybrid Materials , 2016 .

[56]  V. Presser,et al.  Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 , 2011, Advanced materials.

[57]  R. Zuckermann,et al.  The Organic Flatland—Recent Advances in Synthetic 2D Organic Layers , 2015, Advanced materials.

[58]  Q. Peng,et al.  Self-Reduction Synthesis of New MXene/Ag Composites with Unexpected Electrocatalytic Activity , 2016 .

[59]  Yury Gogotsi,et al.  Electromagnetic interference shielding with 2D transition metal carbides (MXenes) , 2016, Science.

[60]  Alexander L. Ivanovskii,et al.  Structural and Electronic Properties and Stability of MXenes Ti2C and Ti3C2 Functionalized by Methoxy Groups , 2013 .

[61]  Dmitri Golberg,et al.  Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications. , 2016, Chemical Society reviews.

[62]  M. Armand,et al.  The M-0-X transition metal oxyhalides: A new class of lamellar cathode material , 1978 .

[63]  Yun Zhang,et al.  Promoted effect of alkalization on the catalytic performance of Rh/alk-Ti3C2X2 (XO, F) for the hydrodechlorination of chlorophenols in base-free aqueous medium , 2017 .

[64]  Y. Nie,et al.  An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti3C2X2 (X = OH, F) nanosheets for oxygen reduction reaction. , 2013, Chemical communications.

[65]  Yury Gogotsi,et al.  Resolving the Structure of Ti3C2Tx MXenes through Multilevel Structural Modeling of the Atomic Pair Distribution Function , 2016 .

[66]  Jaeho Jeon,et al.  Surface group modification and carrier transport properties of layered transition metal carbides (Ti2CT(x), T: -OH, -F and -O). , 2015, Nanoscale.

[67]  S. Hendricks Crystal Structures of the Clay Mineral Hydrates , 1938, Nature.

[68]  P. Eklund,et al.  Layered ternary M n+1AX n phases and their 2D derivative MXene: an overview from a thin-film perspective , 2017 .

[69]  Kai Xiao,et al.  Atomic Defects in Monolayer Titanium Carbide (Ti3C2Tx) MXene. , 2016, ACS nano.

[70]  Zhen Zhou,et al.  High and anisotropic carrier mobility in experimentally possible Ti2CO2 (MXene) monolayers and nanoribbons. , 2015, Nanoscale.

[71]  Xing Zhang,et al.  Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway , 2015, Science.

[72]  R. Ahuja,et al.  Bonding and classification of nanolayered ternaray carbides , 2004 .

[73]  Hua Zhang,et al.  Self-Assembly of Two-Dimensional Nanosheets into One-Dimensional Nanostructures , 2016 .

[74]  Ruitao Lv,et al.  Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets. , 2015, Accounts of chemical research.

[75]  Dermot O'Hare,et al.  Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. , 2012, Chemical reviews.

[76]  Andrew G. Glen,et al.  APPL , 2001 .

[77]  Jianliang Cao,et al.  Preparation and methane adsorption of two-dimensional carbide Ti2C , 2016, Adsorption.

[78]  Yury Gogotsi,et al.  First principles study of two-dimensional early transition metal carbides , 2012 .

[79]  S J L Billinge,et al.  Synthesis and characterization of two-dimensional Nb4C3 (MXene). , 2014, Chemical communications.

[80]  Dandan Sun,et al.  Two-dimensional Sc2C: A reversible and high-capacity hydrogen storage material predicted by first-principles calculations , 2014 .

[81]  Qingzhong Li,et al.  Monolayer Ti₂CO₂: A Promising Candidate for NH₃ Sensor or Capturer with High Sensitivity and Selectivity. , 2015, ACS applied materials & interfaces.

[82]  R. Hennig,et al.  Predicted Surface Composition and Thermodynamic Stability of MXenes in Solution , 2016 .

[83]  Hua Zhang,et al.  Thin metal nanostructures: synthesis, properties and applications , 2014, Chemical science.

[84]  W. Kang,et al.  Role of Strain and Concentration on the Li Adsorption and Diffusion Properties on Ti2C Layer , 2014 .

[85]  Libo Wang,et al.  Hydrothermal synthesis of TiO2/Ti3C2 nanocomposites with enhanced photocatalytic activity , 2015 .

[86]  Ben Zhong Tang,et al.  Single‐Layer Transition Metal Dichalcogenide Nanosheet‐Assisted Assembly of Aggregation‐Induced Emission Molecules to Form Organic Nanosheets with Enhanced Fluorescence , 2014, Advanced materials.

[87]  Liquan Chen,et al.  Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X. , 2015, Journal of the American Chemical Society.

[88]  Qing Zhang,et al.  Porous nanosheet-based ZnO microspheres for the construction of direct electrochemical biosensors. , 2008, Biosensors & bioelectronics.

[89]  C. Näther,et al.  Weak Interactions in Crystals: 4,4′‐Di(tert‐butyl)‐N‐N′‐bipyridinium Diperchlorate—A Biphenyl Analogue with Perpendicular Pyridine Rings , 1995 .

[90]  Qingsheng Zeng,et al.  Black Phosphorus Nanosheets: Synthesis, Characterization and Applications. , 2016, Small.

[91]  Jianbo Cheng,et al.  MXenes: Reusable materials for NH3 sensor or capturer by controlling the charge injection , 2016 .

[92]  Jinlan Wang,et al.  Searching for Highly Active Catalysts for Hydrogen Evolution Reaction Based on O-Terminated MXenes through a Simple Descriptor , 2016 .

[93]  Heng Wu,et al.  Ti3C2 MXenes with Modified Surface for High-Performance Electromagnetic Absorption and Shielding in the X-Band. , 2016, ACS applied materials & interfaces.

[94]  Jing Chen,et al.  CO2 and temperature dual responsive "Smart" MXene phases. , 2015, Chemical communications.

[95]  Yury Gogotsi,et al.  Intercalation and delamination of layered carbides and carbonitrides , 2013, Nature Communications.

[96]  Yoshiyuki Kawazoe,et al.  Novel Electronic and Magnetic Properties of Two‐Dimensional Transition Metal Carbides and Nitrides , 2013 .

[97]  A. Sinitskii,et al.  Effect of Synthesis on Quality, Electronic Properties and Environmental Stability of Individual Monolayer Ti3C2 MXene Flakes , 2016 .

[98]  Yury Gogotsi,et al.  Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers. , 2016, Nanoscale horizons.

[99]  M. Antonietti,et al.  Efficient Water Splitting Using a Simple Ni/N/C Paper Electrocatalyst , 2015 .

[100]  J. Xiang,et al.  Efficient phosphate sequestration for water purification by unique sandwich-like MXene/magnetic iron oxide nanocomposites. , 2016, Nanoscale.

[101]  T. Sasaki,et al.  Study on exfoliation of layered perovskite-type niobates , 2002 .

[102]  B. Bogdanovic,et al.  Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials , 1997 .

[103]  Yury Gogotsi,et al.  Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance , 2014, Nature.

[104]  P. Ye,et al.  Semiconducting black phosphorus: synthesis, transport properties and electronic applications. , 2014, Chemical Society Reviews.

[105]  M. Hargittai,et al.  Molecular structure of metal halides. , 2000, Chemical reviews.

[106]  H. Alshareef,et al.  Direct Chemical Synthesis of MnO2 Nanowhiskers on Transition-Metal Carbide Surfaces for Supercapacitor Applications. , 2016, ACS applied materials & interfaces.

[107]  Qing Tang,et al.  Graphene-analogous low-dimensional materials , 2013 .

[108]  J. Koenderink Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[109]  Zhen Zhou,et al.  A Ti-anchored Ti2CO2 monolayer (MXene) as a single-atom catalyst for CO oxidation , 2016 .

[110]  Jinfeng Chen,et al.  Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties , 2017 .

[111]  T. Bo,et al.  Adsorption of uranyl species on hydroxylated titanium carbide nanosheet: A first-principles study. , 2016, Journal of hazardous materials.

[112]  Yury Gogotsi,et al.  Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media , 2014 .

[113]  Majid Beidaghi,et al.  Two-Dimensional, Ordered, Double Transition Metals Carbides (MXenes). , 2015, ACS nano.

[114]  R. Brec Review on structural and chemical properties of transition metal phosphorous trisulfides MPS3 , 1986 .

[115]  Minyeong Je,et al.  Structural stability and electronic properties of multi-functionalized two-dimensional chromium carbides , 2016 .

[116]  Decai Huang,et al.  Fabrication and thermal stability of two-dimensional carbide Ti3C2 nanosheets , 2016 .

[117]  S. Seal,et al.  Recent development in 2D materials beyond graphene , 2015 .

[118]  Hua Zhang Ultrathin Two-Dimensional Nanomaterials. , 2015, ACS nano.

[119]  Lin-wang Wang,et al.  Materials and Methods Supplementary Text Fig. S1 Reference (35) Database S1 Atomically Thin Two-dimensional Organic-inorganic Hybrid Perovskites , 2022 .

[120]  M. Islam,et al.  Ion intercalation into two-dimensional transition-metal carbides: global screening for new high-capacity battery materials. , 2014, Journal of the American Chemical Society.

[121]  C. Huo,et al.  Thermal stability of two-dimensional Ti2C nanosheets , 2015 .

[122]  Julong He,et al.  MXene: a new family of promising hydrogen storage medium. , 2013, The journal of physical chemistry. A.

[123]  Yury Gogotsi,et al.  2D metal carbides and nitrides (MXenes) for energy storage , 2017 .

[124]  Zhengming Sun,et al.  Progress in research and development on MAX phases: a family of layered ternary compounds , 2011 .

[125]  William R. Dichtel,et al.  Oriented 2D Covalent Organic Framework Thin Films on Single-Layer Graphene , 2011, Science.

[126]  M. Naguib,et al.  Large-scale delamination of multi-layers transition metal carbides and carbonitrides "MXenes". , 2015, Dalton transactions.

[127]  H. Zeng,et al.  Monolayer and Few‐Layer All‐Inorganic Perovskites as a New Family of Two‐Dimensional Semiconductors for Printable Optoelectronic Devices , 2016, Advanced materials.

[128]  V. Presser,et al.  One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes. , 2014, Chemical communications.

[129]  Y. Wen,et al.  Direct electrochemistry and bioelectrocatalysis of horseradish peroxidase based on gold nano-seeds dotted TiO2 nanocomposite. , 2010, Biosensors & bioelectronics.

[130]  F. Armstrong,et al.  Direct electrochemistry of redox proteins , 1988 .

[131]  Lifang Jiao,et al.  Synergetic effects of NaAlH4-TiF3 co-additive on dehydriding reaction of Mg(AlH4)2 , 2014 .

[132]  Dandan Sun,et al.  Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2 , 2015 .

[133]  Mietek Jaroniec,et al.  Interacting Carbon Nitride and Titanium Carbide Nanosheets for High-Performance Oxygen Evolution. , 2016, Angewandte Chemie.

[134]  Hee‐Tae Jung,et al.  High mass loading, binder-free MXene anodes for high areal capacity Li-ion batteries , 2015 .

[135]  E. L. Boulbar,et al.  Quantum well engineering in InGaN/GaN core-shell nanorod structures , 2017 .

[136]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[137]  Renzhi Ma,et al.  Two-dimensional oxide and hydroxide nanosheets: controllable high-quality exfoliation, molecular assembly, and exploration of functionality. , 2015, Accounts of chemical research.

[138]  Jagjit Nanda,et al.  Synthesis and Characterization of 2D Molybdenum Carbide (MXene) , 2016 .

[139]  Xinchen Wang,et al.  Two-dimensional covalent carbon nitride nanosheets: synthesis, functionalization, and applications , 2015 .

[140]  Qiyuan He,et al.  Recent Advances in Ultrathin Two-Dimensional Nanomaterials. , 2017, Chemical reviews.

[141]  Yi Cui,et al.  Graphite-Encapsulated Li-Metal Hybrid Anodes for High-Capacity Li Batteries , 2016 .

[142]  Nicholas P. Power,et al.  Selective Calixarene-Directed Synthesis of MXene Plates, Crumpled Sheets, Spheres, and Scrolls. , 2017, Chemistry.

[143]  Weiqun Shi,et al.  Synthesis and Electrochemical Properties of Two-Dimensional Hafnium Carbide. , 2017, ACS nano.

[144]  Yury Gogotsi,et al.  Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. , 2014, Journal of the American Chemical Society.

[145]  Xiaojing Li,et al.  Synthesis of ruthenium nanoparticles deposited on graphene-like transition metal carbide as an effective catalyst for the hydrolysis of sodium borohydride , 2014 .

[146]  Yury Gogotsi,et al.  NMR reveals the surface functionalisation of Ti3C2 MXene. , 2016, Physical chemistry chemical physics : PCCP.

[147]  Yury Gogotsi,et al.  Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide , 2013, Science.

[148]  H. Pan,et al.  Remarkably improved hydrogen storage properties of NaAlH4 doped with 2D titanium carbide , 2016 .

[149]  P. O’Brien,et al.  Recent developments in II–VI and III–VI semiconductors and their applications in solar cells , 2006 .

[150]  Yi Tang,et al.  TiO2 nanoparticle modified organ-like Ti3C2 MXene nanocomposite encapsulating hemoglobin for a mediator-free biosensor with excellent performances. , 2015, Biosensors & bioelectronics.

[151]  C. Zhi,et al.  Large‐Scale Fabrication of Boron Nitride Nanosheets and Their Utilization in Polymeric Composites with Improved Thermal and Mechanical Properties , 2009 .

[152]  Yu Chen,et al.  Two-Dimensional Ultrathin MXene Ceramic Nanosheets for Photothermal Conversion. , 2017, Nano letters.

[153]  S. Qiao,et al.  Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes. , 2017, Accounts of chemical research.

[154]  G. Mckay,et al.  Barium removal from synthetic natural and produced water using MXene as two dimensional (2-D) nanosheet adsorbent , 2017 .

[155]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[156]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[157]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[158]  Y. Gogotsi,et al.  Two‐Dimensional Nb‐Based M4C3 Solid Solutions (MXenes) , 2016 .

[159]  Pierre-Louis Taberna,et al.  MXene: a promising transition metal carbide anode for lithium-ion batteries , 2012 .

[160]  Nearly free electron states in MXenes , 2016, 1604.07516.

[161]  D. Kothari,et al.  Study of 2D MXene Cr 2 C material for hydrogen storage using density functional theory , 2016 .

[162]  Michel W. Barsoum,et al.  The MN+1AXN phases: A new class of solids , 2000 .

[163]  Li-xin Song,et al.  Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2 , 2017 .

[164]  Yuerui Lu,et al.  Two-Dimensional CH₃NH₃PbI₃ Perovskite: Synthesis and Optoelectronic Application. , 2016, ACS nano.

[165]  Zhang Chuanfang,et al.  階層的な五酸化ニオブ/炭素/ニオブカーバイド(MXene)ハイブリッド材料の合成と電荷貯蔵特性 , 2016 .

[166]  Yi Tang,et al.  An Organ-Like Titanium Carbide Material (MXene) with Multilayer Structure Encapsulating Hemoglobin for a Mediator-Free Biosensor , 2014 .

[167]  A. Vojvodić,et al.  Two-Dimensional Molybdenum Carbide (MXene) as an Efficient Electrocatalyst for Hydrogen Evolution , 2016 .

[168]  Yury Gogotsi,et al.  Two-dimensional transition metal carbides. , 2012, ACS nano.

[169]  U. Schwingenschlögl,et al.  P and Si functionalized MXenes for metal-ion battery applications , 2017 .

[170]  Minshen Zhu,et al.  Photoluminescent Ti3C2 MXene Quantum Dots for Multicolor Cellular Imaging , 2017, Advanced materials.

[171]  Bo Chen,et al.  In Situ Synthesis of Metal Sulfide Nanoparticles Based on 2D Metal-Organic Framework Nanosheets. , 2016, Small.

[172]  J. Tkáč,et al.  Electrochemical performance of Ti3C2Tx MXene in aqueous media: towards ultrasensitive H2O2 sensing. , 2017, Electrochimica acta.