Zooming in on fermions and quantum gravity

We zoom in on the microscopic dynamics for fermions and quantum gravity within the asymptotic-safety paradigm. A key finding of our study is the unavoidable presence of a nonminimal derivative coupling between the curvature and fermion fields in the ultraviolet. Its backreaction on the properties of the Reuter fixed point remains small for finite fermion numbers within a bounded range. This constitutes a nontrivial test of the asymptotic-safety scenario for gravity and fermionic matter, additionally supplemented by our studies of the momentum-dependent vertex flow which indicate the subleading nature of higher-derivative couplings. Moreover our study provides further indications that the critical surface of the Reuter fixed point has a low dimensionality even in the presence of matter.

[1]  Andreas Nink,et al.  On the physical mechanism underlying asymptotic safety , 2012, 1208.0031.

[2]  T. Morris,et al.  Large curvature and background scale independence in single-metric approximations to asymptotic safety , 2016, 1610.03081.

[3]  Ulrich Ellwanger Flow equations forN point functions and bound states , 1994 .

[4]  Martin Reuter,et al.  Bimetric Truncations for Quantum Einstein Gravity and Asymptotic Safety , 2009, 0907.2617.

[5]  F. Wilczek,et al.  RENORMALIZATION OF BLACK HOLE ENTROPY AND OF THE GRAVITATIONAL COUPLING CONSTANT , 1995, hep-th/9506066.

[6]  Masatoshi Yamada,et al.  Asymptotic safety of higher derivative quantum gravity non-minimally coupled with a matter system , 2017, 1703.09033.

[7]  D. Litim,et al.  Renormalisation group flows for gauge theories in axial gauges , 2002, hep-th/0203005.

[8]  Astrid Eichhorn,et al.  Mass Difference for Charged Quarks from Asymptotically Safe Quantum Gravity. , 2018, Physical review letters.

[9]  R. Adams Proceedings , 1947 .

[10]  Max Niedermaier,et al.  Gravitational fixed points and asymptotic safety from perturbation theory , 2010 .

[11]  Daniel Becker,et al.  En route to Background Independence: Broken split-symmetry, and how to restore it with bi-metric average actions , 2014, 1404.4537.

[12]  Roberto Percacci,et al.  An Introduction to Covariant Quantum Gravity and Asymptotic Safety , 2017 .

[13]  Andreas Nink,et al.  The unitary conformal field theory behind 2D Asymptotic Safety , 2015, 1512.06805.

[14]  D. Litim,et al.  Asymptotic safety guaranteed , 2014, 1406.2337.

[15]  W. Marsden I and J , 2012 .

[16]  Christoph Rahmede,et al.  Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation , 2008, 0805.2909.

[17]  M. Niedermaier,et al.  Gravitational fixed points from perturbation theory. , 2009, Physical review letters.

[18]  J. Martín-García,et al.  xPert: computer algebra for metric perturbation theory , 2008, 0807.0824.

[19]  Peter Labus,et al.  Background independence in a background dependent renormalization group , 2016, 1603.04772.

[20]  Frank Saueressig,et al.  Asymptotically safe f(R)-gravity coupled to matter I: The polynomial case , 2018, Annals of Physics.

[21]  Holger Gies,et al.  Gravitational Two-Loop Counterterm Is Asymptotically Safe. , 2016, Physical review letters.

[22]  M. Reichert Towards a UV-complete Standard Model: From baryogenesis to asymptotic safety , 2018 .

[23]  Richard H. Price,et al.  Black Holes , 1997 .

[24]  Astrid Eichhorn,et al.  An asymptotically safe solution to the U(1) triviality problem , 2017, 1702.07724.

[25]  D. Litim Fixed points of quantum gravity , 2003, hep-th/0312114.

[26]  Roberto Percacci,et al.  Functional renormalization with fermions and tetrads , 2012, 1209.3649.

[27]  A. Eichhorn,et al.  Quantum gravity and Standard-Model-like fermions , 2016, 1611.05878.

[28]  Saul A. Teukolsky,et al.  Black Holes , 1998 .

[29]  Christoph Rahmede,et al.  Asymptotic safety of quantum gravity beyond Ricci scalars , 2017, 1801.00162.

[30]  O. Zanusso,et al.  Asymptotic safety in Einstein gravity and scalar-fermion matter. , 2010, Physical review letters.

[31]  Roberto Percacci,et al.  The background scale Ward identity in quantum gravity , 2016, 1611.07005.

[32]  Jan M. Pawlowski,et al.  Quantum-gravity effects on a Higgs-Yukawa model , 2016, 1604.02041.

[33]  M. Scherer,et al.  Discovering and quantifying nontrivial fixed points in multi-field models , 2015, The European physical journal. C, Particles and fields.

[34]  Tim R. Morris The Exact renormalization group and approximate solutions , 1994 .

[35]  D. Kabat Black hole entropy and entropy of entanglement , 1995, hep-th/9503016.

[36]  J. Pawlowski,et al.  Chiral fermions in asymptotically safe quantum gravity , 2016, The European Physical Journal C.

[37]  Frank Saueressig,et al.  A proper fixed functional for four-dimensional Quantum Einstein Gravity , 2015, 1504.07656.

[38]  A. Eichhorn,et al.  Nonminimal hints for asymptotic safety , 2017, 1710.03005.

[39]  Martin Reuter,et al.  Nonperturbative evolution equation for quantum gravity , 1998 .

[40]  S. Hawking,et al.  General Relativity; an Einstein Centenary Survey , 1979 .

[41]  E. Molinaro,et al.  Asymptotically safe Pati-Salam theory , 2018, Physical Review D.

[42]  A. Bonanno,et al.  Asymptotically safe cosmology – A status report , 2017, 1702.04137.

[43]  Jan M. Pawlowski,et al.  Global Flows in Quantum Gravity , 2014, 1403.1232.

[44]  Astrid Eichhorn,et al.  Status of the Asymptotic Safety Paradigm for Quantum Gravity and Matter , 2017, Foundations of physics.

[45]  Nils Strodthoff,et al.  FormTracer. A mathematica tracing package using FORM , 2016, Comput. Phys. Commun..

[46]  J. Braun Fermion interactions and universal behavior in strongly interacting theories , 2011, 1108.4449.

[47]  Natalia Alkofer,et al.  Asymptotically safe f(R)-gravity coupled to matter II: Global solutions , 2018, Physics Letters B.

[48]  C. Wetterich,et al.  Exact evolution equation for the effective potential , 1993, 1710.05815.

[49]  M. Reuter,et al.  Ultraviolet fixed point and generalized flow equation of quantum gravity , 2001 .

[50]  Yoshihisa Kitazawa,et al.  Scaling exponents in quantum gravity near two dimensions , 1993 .

[51]  M. Yamada,et al.  Non-minimal coupling in Higgs–Yukawa model with asymptotically safe gravity , 2015, 1510.03734.

[52]  H. Gies,et al.  Global surpluses of spin-base invariant fermions , 2015, 1502.00918.

[53]  F. Saueressig,et al.  Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation , 2002 .

[54]  C. Wetterich,et al.  Non-perturbative renormalization flow in quantum field theory and statistical physics , 2002 .

[55]  Frank Saueressig,et al.  Quantum Einstein gravity , 2012, 1202.2274.

[56]  Astrid Eichhorn,et al.  Upper bound on the Abelian gauge coupling from asymptotic safety , 2017, 1709.07252.

[57]  José M. Martín-García,et al.  xPerm: fast index canonicalization for tensor computer algebra , 2008, Comput. Phys. Commun..

[58]  Jan M. Pawlowski,et al.  Asymptotic safety of gravity with matter , 2017, 1710.04669.

[59]  L. Zambelli,et al.  Gravitational corrections to Yukawa systems , 2009, 0904.0938.

[60]  D. Litim Optimized renormalization group flows , 2001, hep-th/0103195.

[61]  Jan M. Pawlowski Aspects of the functional renormalisation group , 2007 .

[62]  Astrid Eichhorn,et al.  Top mass from asymptotic safety , 2017, 1707.01107.

[63]  M. Swift,et al.  MOD , 2020, Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems.

[64]  Fermions in gravity with local spin-base invariance , 2013, 1310.2509.

[65]  M. Scherer,et al.  Multicritical behavior in models with two competing order parameters. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  Christoph Rahmede,et al.  Further evidence for asymptotic safety of quantum gravity , 2014, 1410.4815.

[67]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[68]  Astrid Eichhorn,et al.  Quantum-gravity-induced matter self-interactions in the asymptotic-safety scenario , 2012, 1204.0965.

[69]  A. Schwenk,et al.  Renormalization group and effective field theory approaches to many-body systems , 2012 .

[70]  Frank Saueressig,et al.  Quantum gravity on foliated spacetimes: Asymptotically safe and sound , 2016, 1609.04813.

[71]  Oliver J. Rosten Fundamentals of the Exact Renormalization Group , 2010, 1003.1366.

[72]  Flow equations for the relevant part of the pure Yang—Mills action , 1995, hep-th/9506019.

[73]  Astrid Eichhorn,et al.  Viability of quantum-gravity induced ultraviolet completions for matter , 2017, 1705.02342.

[74]  Frank Saueressig,et al.  Asymptotically safe Lorentzian gravity. , 2011, Physical review letters.

[75]  Renato Portugal,et al.  The Invar tensor package , 2007, Computer Physics Communications.

[76]  Jan M. Pawlowski,et al.  Local Quantum Gravity , 2015, 1506.07016.

[77]  Jan M. Pawlowski,et al.  Curvature dependence of quantum gravity , 2017, 1711.09259.

[78]  Frank Saueressig,et al.  ASYMPTOTIC SAFETY IN HIGHER-DERIVATIVE GRAVITY , 2009, 0901.2984.

[79]  Renato Portugal,et al.  The Invar tensor package: Differential invariants of Riemann , 2008, Comput. Phys. Commun..

[80]  Frank Saueressig,et al.  Renormalization group fixed points of foliated gravity-matter systems , 2017, 1702.06539.

[81]  Jan M. Pawlowski,et al.  Asymptotic safety of gravity-matter systems , 2015, 1510.07018.

[82]  Peter Labus,et al.  Effective universality in quantum gravity , 2018, SciPost Physics.

[83]  R. Percacci,et al.  Matter matters in asymptotically safe quantum gravity , 2013, 1311.2898.

[84]  C. Wetterich,et al.  Gluon condensation in nonperturbative flow equations , 1997 .

[85]  J. M. Pawlowski,et al.  Towards apparent convergence in asymptotically safe quantum gravity , 2016, The European Physical Journal C.

[86]  Astrid Eichhorn,et al.  Light fermions in quantum gravity , 2011, 1104.5366.

[87]  Nobuyoshi Ohta,et al.  Background scale independence in quantum gravity , 2017, 1701.01506.