The Initial Stages of Template-Controlled CaCO3 Formation Revealed by Cryo-TEM

Biogenic calcium carbonate forms the inorganic component of seashells, otoliths, and many marine skeletons, and its formation is directed by an ordered template of macromolecules. Classical nucleation theory considers crystal formation to occur from a critical nucleus formed by the assembly of ions from solution. Using cryotransmission electron microscopy, we found that template-directed calcium carbonate formation starts with the formation of prenucleation clusters. Their aggregation leads to the nucleation of amorphous nanoparticles in solution. These nanoparticles assemble at the template and, after reaching a critical size, develop dynamic crystalline domains, one of which is selectively stabilized by the template. Our findings have implications for template-directed mineral formation in biological as well as in synthetic systems.

[1]  Helmut Cölfen,et al.  Stable Prenucleation Calcium Carbonate Clusters , 2008, Science.

[2]  N. Sommerdijk,et al.  Biomimetic CaCO3 mineralization using designer molecules and interfaces. , 2008, Chemical reviews.

[3]  J. Harding,et al.  Simulations of calcite crystallization on self-assembled monolayers. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[4]  B. Phillips,et al.  Structural Characteristics of Synthetic Amorphous Calcium Carbonate , 2008 .

[5]  D. Quigley,et al.  Free energy and structure of calcium carbonate nanoparticles during early stages of crystallization. , 2008, The Journal of chemical physics.

[6]  P. Bomans,et al.  A quasi-time-resolved CryoTEM study of the nucleation of CaCO3 under langmuir monolayers. , 2008, Journal of the American Chemical Society.

[7]  F. Meldrum,et al.  Synthesis-dependant structural variations in amorphous calcium carbonate , 2007 .

[8]  Xiang‐Yang Liu,et al.  How does a transient amorphous precursor template crystallization. , 2007, Journal of the American Chemical Society.

[9]  T. Y. Han,et al.  Structural development of mercaptophenol self-assembled monolayers and the overlying mineral phase during templated CaCO3 crystallization from a transient amorphous film. , 2007, Journal of the American Chemical Society.

[10]  S. Weiner,et al.  Structural Characterization of the Transient Amorphous Calcium Carbonate Precursor Phase in Sea Urchin Embryos , 2006 .

[11]  Wolfgang Baumeister,et al.  A visual approach to proteomics , 2006, Nature Reviews Molecular Cell Biology.

[12]  Steve Weiner,et al.  Mollusk shell formation: a source of new concepts for understanding biomineralization processes. , 2006, Chemistry.

[13]  J. Aizenberg,et al.  Skeleton of Euplectella sp.: Structural Hierarchy from the Nanoscale to the Macroscale , 2005, Science.

[14]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[15]  S. Weiner,et al.  Sea Urchin Spine Calcite Forms via a Transient Amorphous Calcium Carbonate Phase , 2004, Science.

[16]  F. Marin,et al.  Biomineralisations in crustaceans: storage strategies , 2004 .

[17]  Mark E. Davis How Life Makes Hard Stuff , 2004, Science.

[18]  G. H. Nancollas,et al.  Dissolution at the Nanoscale: Self‐Preservation of Biominerals , 2004 .

[19]  L. Gower,et al.  WHEN IS TEMPLATE DIRECTED MINERALIZATION REALLY TEMPLATE DIRECTED , 2003 .

[20]  F. Meldrum,et al.  Study of Calcium Carbonate Precipitation under a Series of Fatty Acid Langmuir Monolayers Using Brewster Angle Microscopy , 2003 .

[21]  Joanna Aizenberg,et al.  Direct Fabrication of Large Micropatterned Single Crystals , 2003, Science.

[22]  E. W. Meijer,et al.  Control over calcium carbonate phase formation by dendrimer/surfactant templates. , 2002, Chemistry.

[23]  Mario Viani,et al.  Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites , 1999, Nature.

[24]  J. Aizenberg,et al.  Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[25]  Stephen Mann,et al.  Crystal assembly and phylogenetic evolution in heterococcoliths , 1992, Nature.

[26]  R. Davey,et al.  Oriented crystallization of CaCo3 under compressed monolayers. Part 1.—Morphological studies of mature crystals , 1991 .

[27]  L. Brečević,et al.  Solubility of amorphous calcium carbonate , 1989 .

[28]  Stephen Mann,et al.  Controlled crystallization of CaCO3 under stearic acid monolayers , 1988, Nature.

[29]  A. S. Posner,et al.  Synthetic amorphous calcium phosphate and its relation to bone mineral structure , 1975 .