Electrical transport properties in Co nanocluster-assembled granular film

A Co nanocluster-assembled granular film with three-dimensional cross-connection paralleled conductive paths was fabricated by using the plasma-gas-condensation method in a vacuum environment. The temperature-dependent longitudinal resistivity and anomalous Hall effect of this new type granular film were systematically studied. The longitudinal resistivity of the Co nanocluster-assembled granular film first decreased and then increased with increasing measuring temperature, revealing a minimum value at certain temperature, T min. In a low temperature region ( T < T min), the barrier between adjacent nanoclusters governed the electrical transport process, and the temperature coefficient of resistance (TCR) showed an insulator-type behavior. The thermal fluctuation-induced tunneling conduction progressively increased with increasing temperature, which led to a decrease in the longitudinal resistivity. In a high temperature region, the TCR showed a metallic-type behavior, which was primarily attributed to th...

[1]  Juhn-Jong Lin,et al.  Electron-electron interaction effect on longitudinal and Hall transport in thin and thick Ag-x(SnO2)(1-x) granular metals , 2015 .

[2]  R. Cohen,et al.  Effects of electron correlations on transport properties of iron at Earth’s core conditions , 2015, Nature.

[3]  Weichao Wang,et al.  Extraordinary Hall effect and universal scaling in Fex(ZnO)1–x granular thin films at room temperature , 2015 .

[4]  J. Lu,et al.  Quantum-interference transport through surface layers of indium-doped ZnO nanowires , 2013, Nanotechnology.

[5]  Yufan Li,et al.  The anomalous Hall effect in epitaxial face-centered-cubic cobalt films , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[6]  A. Manchon,et al.  Effects of surface and interface scattering on anomalous Hall effect in Co/Pd multilayers , 2012 .

[7]  X. D. Liu,et al.  Anomalous Hall effects in Co2FeSi Heusler compound films and Co2FeSi-Al2O3 granular films , 2012 .

[8]  W. Mi,et al.  Anomalous Hall effect in polycrystalline Ni films , 2012 .

[9]  C. Felser,et al.  Exploring Co2MnAl Heusler compound for anomalous Hall effect sensors , 2011 .

[10]  Yuxiang Chen,et al.  Gas-phase preparation and size control of Fe nanoparticles , 2011 .

[11]  Andrea R. Gerson,et al.  Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn , 2010 .

[12]  Juhn-Jong Lin,et al.  Giant Hall effect in nonmagnetic Mo/ SnO2 granular films , 2010 .

[13]  G. Catelani,et al.  Saturation of the anomalous Hall effect in critically disordered ultrathin CNi3 films. , 2010, Physical review letters.

[14]  Hui Liu,et al.  Large extraordinary Hall effect and anomalous scaling relations between the Hall and longitudinal conductivities in ε -Fe 3 N nanocrystalline films , 2009 .

[15]  M. Kamalakar,et al.  Low temperature electrical transport in ferromagnetic Ni nanowires , 2009 .

[16]  K. Efetov,et al.  Anomalous Hall effect in granular ferromagnetic metals and effects of weak localization , 2008, 0812.3085.

[17]  Yong Lin,et al.  Thermal fluctuation-induced tunneling conduction through metal nanowire contacts , 2008, Nanotechnology.

[18]  D. Peng,et al.  Random dipolar ferromagnetism in Co/CoO core-shell cluster assemblies observed by electron holography , 2007 .

[19]  A. Hebard,et al.  Weak-localization correction to the anomalous Hall effect in polycrystalline fe films. , 2006, Physical review letters.

[20]  K. Efetov,et al.  Granular electronic systems , 2006, cond-mat/0603522.

[21]  J. Kötzler,et al.  Anomalous Hall resistivity of cobalt films: Evidence for the intrinsic spin-orbit effect , 2005 .

[22]  K. Lal A low temperature study of electron transport properties of tantalum nitride thin films prepared by ion beam assisted deposition , 2004 .

[23]  Xixiang Zhang,et al.  Extraordinary Hall Effect in (Ni 80 Fe 20 ) x (SiO 2 ) 1-x Thin Films , 2004 .

[24]  K. Efetov,et al.  Transport properties of granular metals at low temperatures. , 2003, Physical review letters.

[25]  K. Efetov,et al.  Coulomb effects in granular materials at not very low temperatures , 2003, cond-mat/0302257.

[26]  D. Peng,et al.  Structural and magnetic characteristics of monodispersed Fe and oxide-coated Fe cluster assemblies , 2002 .

[27]  F. Brouers,et al.  Anomalous Hall effect in granular alloys , 1997 .

[28]  V. Dupuis,et al.  GIANT MAGNETORESISTANCE IN CO-AG GRANULAR FILMS PREPARED BY LOW-ENERGY CLUSTER BEAM DEPOSITION , 1997 .

[29]  F. Brouers,et al.  Extraordinary Hall effect in magnetic granular alloys , 1997 .

[30]  A. B. Pakhomov,et al.  Giant Hall effect in percolating ferromagnetic granular metal‐insulator films , 1995 .

[31]  Jiang,et al.  Extraordinary Hall effect and giant magnetoresistance in the granular Co-Ag system. , 1992, Physical review letters.

[32]  J. Ketterson,et al.  Anomalous Hall effect in (110)Fe/(110)Cr multilayers , 1991 .

[33]  K. Klabunde,et al.  XPS studies of solvated metal atom dispersed (SMAD) catalysts. Evidence for layered cobalt-manganese particles on alumina and silica , 1991 .

[34]  A. Stesmans Explanation of the apparent T 2 dependence of the surface-induced electrical resistivity in pure metals from measurements on high-purity Au foils , 1983 .

[35]  A. Lebugle,et al.  Experimental L and M Core Level Binding Energies for the Metals 22Ti to 30Zn , 1981 .

[36]  Ping Sheng,et al.  Fluctuation-induced tunneling conduction in disordered materials , 1980 .

[37]  Ping Sheng,et al.  Fluctuation-Induced Tunneling Conduction in Carbon-Polyvinylchloride Composites , 1978 .

[38]  R. Cochrane,et al.  Structural Manifestations in Amorphous Alloys: Resistance Minima , 1975 .

[39]  A. D'huysser,et al.  Influence de la polarisation des liaisons sur les spectres esca des oxydes de cobalt , 1975 .

[40]  L. Berger,et al.  Side-Jump Mechanism for the Hall Effect of Ferromagnets , 1970 .

[41]  Robert Karplus,et al.  Hall Effect in Ferromagnetics , 1954 .

[42]  A. Wilson The electrical conductivity of the transition metals. , 1938, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.