A Geometric Approach to Visualization of Variability in Univariate and Multivariate Functional Data

This dissertation describes a new method for the construction and visualization of geometrically-motivated displays for univariate functional data and multivariate curve data. For univariate functional data, we use a recent functional data analysis framework, based on a representation of functions called square-root slope functions. We decompose observed variation in functional data into three main components: amplitude, phase, and vertical translation. For multivariate curve data, we use a similar recent elastic curve data analysis framework, based on square-root velocity functions, to decompose variability in curve data into five main components: location, scale, shape, orientation, and reparametrization. We then construct separate displays for each component, using the geometry and metric of each representation space, based on a novel definition of the median, the two quartiles, and extreme observations. The outlyingness of function and curve data is a very complex concept. Thus, we propose to separately identify outliers based on each of the main components after decomposition. We provide a variety of visualization tools for the proposed displays, including surface plots for the amplitude and phase components of univariate functional data, and circular plots for the orientation and seed components of bivariate curve data, among others. We evaluate the proposed methods using extensive simulations and then focus our attention on multiple real data applications, including exploratory data analysis of sea surface temperature functions, electrocardiogram biosignals, growth ii curves, gait functions, and respiration functions. We also study variability in simulated 3D spirals, handwritten signatures, 3D fibers from Diffusion Tensor Magnetic Resonance Imaging (DT-MRI), and 3D Lorenz attractor curves.

[1]  Ross T. Whitaker,et al.  Curve Boxplot: Generalization of Boxplot for Ensembles of Curves , 2014, IEEE Transactions on Visualization and Computer Graphics.

[2]  Wenceslao González-Manteiga,et al.  A functional analysis of NOx levels: location and scale estimation and outlier detection , 2007, Comput. Stat..

[3]  P. Mahalanobis On the generalized distance in statistics , 1936 .

[4]  James Kuelbs,et al.  Concerns with Functional Depth , 2013, 1310.0045.

[5]  W. Kabsch A solution for the best rotation to relate two sets of vectors , 1976 .

[6]  Wen Cheng,et al.  Bayesian Registration of Functions and Curves , 2013, 1311.2105.

[7]  Ricardo Fraiman,et al.  Quantiles for finite and infinite dimensional data , 2012, J. Multivar. Anal..

[8]  Wei Wu,et al.  Generative models for functional data using phase and amplitude separation , 2012, Comput. Stat. Data Anal..

[9]  Anuj Srivastava,et al.  Riemannian Analysis of Probability Density Functions with Applications in Vision , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  Sebastian Kurtek,et al.  A Geometric Approach to Visualization of Variability in Functional Data , 2017, 1702.01183.

[11]  Probal Chaudhuri,et al.  On data depth in infinite dimensional spaces , 2014, 1402.2775.

[12]  D. Kendall SHAPE MANIFOLDS, PROCRUSTEAN METRICS, AND COMPLEX PROJECTIVE SPACES , 1984 .

[13]  Jean Meloche,et al.  Multivariate L-estimation , 1999 .

[14]  Jeffrey M. Hausdorff,et al.  Physionet: Components of a New Research Resource for Complex Physiologic Signals". Circu-lation Vol , 2000 .

[15]  Philipp Berens,et al.  CircStat: AMATLABToolbox for Circular Statistics , 2009, Journal of Statistical Software.

[16]  T. Gasser,et al.  Statistical Tools to Analyze Data Representing a Sample of Curves , 1992 .

[17]  Anuj Srivastava,et al.  A Novel Representation for Riemannian Analysis of Elastic Curves in Rn , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  W. Kabsch A discussion of the solution for the best rotation to relate two sets of vectors , 1978 .

[19]  Anuj Srivastava,et al.  On Shape of Plane Elastic Curves , 2007, International Journal of Computer Vision.

[20]  Anuj Srivastava,et al.  Parameterization-Invariant Shape Comparisons of Anatomical Surfaces , 2011, IEEE Transactions on Medical Imaging.

[21]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[22]  J. Ramsay,et al.  Curve registration , 2018, Oxford Handbooks Online.

[23]  Marc G. Genton,et al.  Adjusted functional boxplots for spatio‐temporal data visualization and outlier detection , 2012 .

[24]  John W. Tukey,et al.  Exploratory Data Analysis. , 1979 .

[25]  Suresh Venkatasubramanian,et al.  The geometric median on Riemannian manifolds with application to robust atlas estimation , 2009, NeuroImage.

[26]  H. Le,et al.  Locating Fréchet means with application to shape spaces , 2001, Advances in Applied Probability.

[27]  Regina Y. Liu On a Notion of Data Depth Based on Random Simplices , 1990 .

[28]  R. D. Tuddenham,et al.  Physical growth of California boys and girls from birth to eighteen years. , 1954, Publications in child development. University of California, Berkeley.

[29]  J. Marron,et al.  Registration of Functional Data Using Fisher-Rao Metric , 2011, 1103.3817.

[30]  Anuj Srivastava,et al.  Statistical analysis of manual segmentations of structures in medical images , 2013, Comput. Vis. Image Underst..

[31]  Anuj Srivastava,et al.  Parameterization-Invariant Shape Statistics and Probabilistic Classification of Anatomical Surfaces , 2011, IPMI.

[32]  Sara López-Pintado,et al.  Simplicial band depth for multivariate functional data , 2014, Adv. Data Anal. Classif..

[33]  Anuj Srivastava,et al.  Statistical Modeling of Curves Using Shapes and Related Features , 2012 .

[34]  Eric Klassen,et al.  Precise Matching of PL Curves in $R^N$ in the Square Root Velocity Framework , 2015, 1501.00577.

[35]  Sebastian Kurtek,et al.  A new curves-based method for adaptive multimodal registration , 2015, 2015 International Conference on Image Processing Theory, Tools and Applications (IPTA).

[36]  J. S. Marron,et al.  Statistical atlas construction via weighted functional boxplots , 2014, Medical Image Anal..

[37]  J. Romo,et al.  On the Concept of Depth for Functional Data , 2009 .

[38]  Rob J Hyndman,et al.  Rainbow Plots, Bagplots, and Boxplots for Functional Data , 2010 .

[39]  J. Ramsay,et al.  Combining Registration and Fitting for Functional Models , 2008 .

[40]  H. Müller,et al.  Pairwise curve synchronization for functional data , 2008 .

[41]  Anuj Srivastava,et al.  Elastic Shape Matching of Parameterized Surfaces Using Square Root Normal Fields , 2012, ECCV.

[42]  M. Genton,et al.  Functional Boxplots , 2011 .

[43]  Alain Trouvé,et al.  Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms , 2005, International Journal of Computer Vision.

[44]  Laurent Younes,et al.  Computable Elastic Distances Between Shapes , 1998, SIAM J. Appl. Math..

[45]  B. Silverman,et al.  Functional Data Analysis , 1997 .

[46]  Hong Chang,et al.  SVC2004: First International Signature Verification Competition , 2004, ICBA.

[47]  Gary E. Christensen,et al.  Segmentation, alignment and statistical analysis of biosignals with application to disease classification , 2013 .

[48]  H. Oja Descriptive Statistics for Multivariate Distributions , 1983 .

[49]  M. Febrero,et al.  Outlier detection in functional data by depth measures, with application to identify abnormal NOx levels , 2008 .

[50]  R. Fraiman,et al.  Trimmed means for functional data , 2001 .

[51]  S. R. Jammalamadaka,et al.  Directional Statistics, I , 2011 .

[52]  K. Mardia,et al.  Statistical Shape Analysis , 1998 .

[53]  Ralf Bousseljot,et al.  Nutzung der EKG-Signaldatenbank CARDIODAT der PTB über das Internet , 2009 .

[54]  David Kaziska Functional Analysis of Variance, Discriminant Analysis, and Clustering in a Manifold of Elastic Curves , 2011 .

[55]  J. S. Marron,et al.  Functional Data Analysis of Amplitude and Phase Variation , 2015, 1512.03216.

[56]  Anuj Srivastava,et al.  Analysis of AneuRisk65 data: Elastic shape registration of curves , 2014 .

[57]  Anuj Srivastava,et al.  Shape Analysis of Elastic Curves in Euclidean Spaces , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[58]  Francesca Ieva,et al.  Depth Measures for Multivariate Functional Data , 2013 .

[59]  Cun-Hui Zhang,et al.  The multivariate L1-median and associated data depth. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[60]  M. Hubert,et al.  Multivariate Functional Halfspace Depth , 2012 .