Video Source Object Segmentation ROI AdaBoost Classifier Sub-Window Tracker Bayesian Classifier Voting Scheme Objects Repository Final Classifier Laserscanner Vision-Based System Ladar-Based System Feature Extraction Position and Size Estimation Laser-Camera Coordinate Transformation Object Class an

A multi-module architecture to detect, track and classify objects in semi-structured outdoor scenarios for intelligent vehicles is proposed in this paper. In order to fulfill this task it was used the information provided by a laser range finder (LRF) and a monocular camera. The detection and tracking phases are performed in the LRF space, and the object classification methods work both in laser (with a Majority Voting scheme and a Gaussian Mixture Model (GMM) classifier) and in vision spaces (AdaBoost classifier). A sum decision rule based on the Bayesapproach is used in order to combine the results of each classification technique, and hence a more reliable object classification is achieved. Experiments using real data confirm the robustness of the proposed architecture.

[1]  R. Hingorani,et al.  OBJECT TRACKING WITH A MOVING CAMERA An Application of Dynaiiiic Motion Analysis , 1989 .

[2]  Yakov Bar-Shalom,et al.  Multitarget-Multisensor Tracking: Principles and Techniques , 1995 .

[3]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[4]  Jurgen Vandorpe,et al.  Exact dynamic map building for a mobile robot using geometrical primitives produced by a 2D range finder , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[5]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[6]  Tomaso A. Poggio,et al.  Pedestrian detection using wavelet templates , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[7]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Hironobu Fujiyoshi,et al.  Moving target classification and tracking from real-time video , 1998, Proceedings Fourth IEEE Workshop on Applications of Computer Vision. WACV'98 (Cat. No.98EX201).

[9]  Günther Schmidt,et al.  Fusing range and intensity images for mobile robot localization , 1999, IEEE Trans. Robotics Autom..

[10]  Dariu Gavrila,et al.  Real-time object detection for "smart" vehicles , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[11]  Liang Zhao,et al.  Stereo- and neural network-based pedestrian detection , 2000, IEEE Trans. Intell. Transp. Syst..

[12]  J. Friedman Special Invited Paper-Additive logistic regression: A statistical view of boosting , 2000 .

[13]  Jean-Yves Bouguet,et al.  Camera calibration toolbox for matlab , 2001 .

[14]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[15]  S. Heinrich,et al.  Fast obstacle detection for urban traffic situations , 2002, IEEE Trans. Intell. Transp. Syst..

[16]  Til Aach,et al.  Detection and recognition of moving objects using statistical motion detection and Fourier descriptors , 2003, 12th International Conference on Image Analysis and Processing, 2003.Proceedings..

[17]  Daniel Castro,et al.  Feature extraction for moving objects tracking system in indoor environments , 2004 .

[18]  K. Dietmayer,et al.  Object tracking and classification using a multiple hypothesis approach , 2004, IEEE Intelligent Vehicles Symposium, 2004.

[19]  Geovany de Araújo Borges,et al.  Line Extraction in 2D Range Images for Mobile Robotics , 2004, J. Intell. Robotic Syst..

[20]  A. Broggi,et al.  Pedestrian localization and tracking system with Kalman filtering , 2004, IEEE Intelligent Vehicles Symposium, 2004.

[21]  Nanning Zheng,et al.  Pedestrian detection using sparse Gabor filter and support vector machine , 2005, IEEE Proceedings. Intelligent Vehicles Symposium, 2005..

[22]  Pólo de Coimbra,et al.  Segmentation and Geometric Primitives Extraction from 2D Laser Range Data for Mobile Robot Applications , 2005 .

[23]  Joni-Kristian Kämäräinen,et al.  Feature representation and discrimination based on Gaussian mixture model probability densities - Practices and algorithms , 2006, Pattern Recognit..

[24]  P. Peixoto,et al.  VISION-BASED PEDESTRIAN DETECTION USING HAAR-LIKE FEATURES , 2007 .

[25]  E. Nebot,et al.  Simultaneous Localization and Map Building Using Natural features in Outdoor Environments , .