Adaptive synchronization of uncertain fractional-order chaotic systems using sliding mode control techniques

In this article, an adaptive nonlinear controller is designed to synchronize two uncertain fractional-order chaotic systems using fractional-order sliding mode control. The controller structure and adaptation laws are chosen such that asymptotic stability of the closed-loop control system is guaranteed. The adaptation laws are being calculated from a proper sliding surface using the Lyapunov stability theory. This method guarantees the closed-loop control system robustness against the system uncertainties and external disturbances. Eventually, the presented method is used to synchronize two fractional-order gyro and Duffing systems, and the numerical simulation results demonstrate the effectiveness of this method.

[1]  M. Shafiei,et al.  Output tracking of uncertain fractional-order nonlinear systems via a novel fractional-order sliding mode approach , 2013 .

[2]  A. J. Calderón,et al.  The fractional order lead compensator , 2004, Second IEEE International Conference on Computational Cybernetics, 2004. ICCC 2004..

[3]  Xianwei Li,et al.  A Novel Reduced-Order Protocol for Consensus Control of Linear Multiagent Systems , 2019, IEEE Transactions on Automatic Control.

[4]  Hassan Salarieh,et al.  Robust adaptive fractional order proportional integral derivative controller design for uncertain fractional order nonlinear systems using sliding mode control , 2018, J. Syst. Control. Eng..

[5]  Ju H. Park,et al.  Adaptive synchronization for uncertain chaotic neural networks with mixed time delays using fuzzy disturbance observer , 2013, Appl. Math. Comput..

[6]  A. Charef,et al.  Digital fractional order operators for R-wave detection in electrocardiogram signal , 2009 .

[7]  O. Agrawal Solution for a Fractional Diffusion-Wave Equation Defined in a Bounded Domain , 2002 .

[8]  A. J. Calderón,et al.  AUTO-TUNING OF FRACTIONAL LEAD-LAG COMPENSATORS , 2005 .

[9]  Bao Shi,et al.  On Fractional Model Reference Adaptive Control , 2014, TheScientificWorldJournal.

[10]  I. Podlubny Fractional differential equations , 1998 .

[11]  Ruoxun Zhang,et al.  Robust chaos synchronization of fractional-order chaotic systems with unknown parameters and uncertain perturbations , 2012 .

[12]  R. Bagley,et al.  Fractional order state equations for the control of viscoelasticallydamped structures , 1991 .

[13]  K. Diethelm The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type , 2010 .

[14]  Weihua Deng,et al.  Remarks on fractional derivatives , 2007, Appl. Math. Comput..

[15]  Edgar E. Peters Fractal Market Analysis: Applying Chaos Theory to Investment and Economics , 1994 .

[16]  Yangquan Chen,et al.  Computers and Mathematics with Applications Stability of Fractional-order Nonlinear Dynamic Systems: Lyapunov Direct Method and Generalized Mittag–leffler Stability , 2022 .

[17]  Chongxin Liu,et al.  Hyperchaos synchronization of fractional-order arbitrary dimensional dynamical systems via modified sliding mode control , 2014 .

[18]  Ruoxun Zhang,et al.  Adaptive synchronization of fractional-order chaotic systems via a single driving variable , 2011 .

[19]  L. Yang,et al.  Adaptive Synchronization of Fractional Hyper-Chaotic System with Unknown Parameters , 2013 .

[20]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[21]  Milad Siami,et al.  More Details on Analysis of Fractional-order Van der Pol Oscillator , 2009 .

[22]  Alain Oustaloup,et al.  From fractal robustness to the CRONE control , 1999 .

[23]  Ali Meghdari,et al.  Model reference adaptive control in fractional order systems using discrete-time approximation methods , 2015, Commun. Nonlinear Sci. Numer. Simul..

[24]  Mohammad Pourmahmood Aghababa,et al.  The rich dynamics of fractional-order gyros applying a fractional controller , 2013, J. Syst. Control. Eng..

[25]  Ju H. Park,et al.  Exponential synchronization for fractional-order chaotic systems with mixed uncertainties , 2015, Complex..

[26]  Radu Marculescu,et al.  Implantable Pacemakers Control and Optimization via Fractional Calculus Approaches: A Cyber-Physical Systems Perspective , 2012, 2012 IEEE/ACM Third International Conference on Cyber-Physical Systems.

[27]  N. Retiere,et al.  Identification of fractional order models for electrical networks , 2006, IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics.

[28]  Ahmet Dumlu,et al.  Design of a fractional-order adaptive integral sliding mode controller for the trajectory tracking control of robot manipulators , 2018, J. Syst. Control. Eng..

[29]  José Manoel Balthazar,et al.  Synchronization of the unified chaotic system and application in secure communication , 2009 .

[30]  A. Buscarino,et al.  Chaos in a Fractional Order Duffing System: a circuit implementation , 2019, 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC).

[31]  Yury F. Luchko,et al.  Algorithms for the fractional calculus: A selection of numerical methods , 2005 .

[32]  Andrew Y. T. Leung,et al.  Bifurcation and Chaos in Engineering , 1998 .

[33]  Frank L. Lewis,et al.  Cooperative Output Regulation of Heterogeneous Linear Multi-Agent Networks via ${H_{\infty }}$ Performance Allocation , 2019, IEEE Transactions on Automatic Control.

[34]  K.N. Salama,et al.  Control and switching synchronization of fractional order chaotic systems using active control technique , 2013, Journal of advanced research.

[35]  Rajan Rakkiyappan,et al.  Hybrid Projective Synchronization of Fractional-Order Chaotic Complex Nonlinear Systems With Time Delays , 2016 .

[36]  Runfan Zhang,et al.  Control of a class of fractional-order chaotic systems via sliding mode , 2012 .

[37]  Maokang Luo,et al.  Dynamic behavior of fractional order Duffing chaotic system and its synchronization via singly active control , 2012 .

[38]  F. Mainardi Fractional Relaxation-Oscillation and Fractional Diffusion-Wave Phenomena , 1996 .

[39]  A. El-Sayed,et al.  Fractional-order diffusion-wave equation , 1996 .

[40]  Ali Meghdari,et al.  Controllability of linear fractional stochastic systems , 2015 .

[41]  Sundarapandian Vaidyanathan,et al.  Adaptive Synchronization of Chemical Chaotic Reactors , 2015 .

[42]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[43]  Chunguang Li,et al.  Chaos and hyperchaos in the fractional-order Rössler equations , 2004 .

[44]  Mohammad Saleh Tavazoei,et al.  Stabilizing fractional-order PI and PD controllers: An integer-order implemented system approach , 2010 .

[45]  YangQuan Chen,et al.  Fractional order control - A tutorial , 2009, 2009 American Control Conference.

[46]  Chunguang Li,et al.  Chaos in the fractional order Chen system and its control , 2004 .

[47]  Otto E. Rössler,et al.  Chaos and chemistry , 2022, Blackstar Theory.

[48]  R. Bagley,et al.  The fractional order state equations for the control of viscoelastically damped structures , 1989 .

[49]  R. Magin Fractional Calculus in Bioengineering , 2006 .

[50]  Yongli Liu,et al.  A new Barbalat's lemma and Lyapunov stability theorem for fractional order systems , 2017, 2017 29th Chinese Control And Decision Conference (CCDC).

[51]  Hamid Reza Karimi,et al.  Improved Stability and Stabilization Results for Stochastic Synchronization of Continuous-Time Semi-Markovian Jump Neural Networks With Time-Varying Delay , 2017, IEEE Transactions on Neural Networks and Learning Systems.

[52]  T. Chai,et al.  Adaptive synchronization between two different chaotic systems with unknown parameters , 2006 .

[53]  C. F. Lorenzo,et al.  Chaos in a fractional order Chua's system , 1995 .

[54]  B. Meenakshipriya,et al.  Fractional-order PIλDµ controller tuned by coefficient diagram method and particle swarm optimization algorithms for SO2 emission control process , 2017, J. Syst. Control. Eng..

[55]  Reza Ghaderi,et al.  Synchronization of Gyro Systems via Fractional-Order Adaptive Controller , 2010 .

[56]  Yangquan Chen,et al.  Fractional order [proportional derivative] controller for a class of fractional order systems , 2009, Autom..

[57]  Mohammad Saleh Tavazoei,et al.  Fractional controller to stabilize fixed points of uncertain chaotic systems: Theoretical and experimental study , 2008 .

[58]  N. Engheia On the role of fractional calculus in electromagnetic theory , 1997 .