Relatively divisible and relatively flat objects in exact categories: applications

For a Quillen exact category $${\mathcal {C}}$$ C endowed with two exact structures $${\mathcal {D}}$$ D and $${\mathcal {E}}$$ E such that $${\mathcal {E}}\subseteq {\mathcal {D}}$$ E ⊆ D , an object X of $${\mathcal {C}}$$ C is called $${\mathcal {E}}$$ E -divisible (respectively $${\mathcal {E}}$$ E -flat) if every short exact sequence from $${\mathcal {D}}$$ D starting (respectively ending) with X belongs to $${\mathcal {E}}$$ E . We continue our study of relatively divisible and relatively flat objects in Quillen exact categories with applications to finitely accessible additive categories and module categories. We derive consequences for exact structures generated by the simple modules and the modules with zero Jacobson radical.

[1]  E. G. Sklyarenko,et al.  RELATIVE HOMOLOGICAL ALGEBRA IN CATEGORIES OF MODULES , 1978 .

[2]  E. Enochs,et al.  All Modules Have Flat Covers , 2001 .

[3]  L. Mao On Covers and Envelopes in Some Functor Categories , 2013 .

[4]  Robert Wisbauer,et al.  Foundations of module and ring theory , 1991 .

[5]  S. Crivei EPIC ENVELOPES BY GENERALIZED FLAT MODULES , 2009 .

[6]  S. Crivei NEAT AND CONEAT SUBMODULES OF MODULES OVER COMMUTATIVE RINGS , 2014 .

[7]  M. Prest,et al.  Covers in finitely accessible categories , 2010 .

[8]  Philipp Rothmaler,et al.  When Cotorsion Modules are Pure injective , 2009, J. Math. Log..

[9]  G. Azumaya Finite splitness and finite projectivity , 1987 .

[10]  E. Enochs A Note on Absolutely Pure Modules , 1976, Canadian Mathematical Bulletin.

[11]  M. Prest Definable Additive Categories: Purity and Model Theory , 2011 .

[12]  Lidia Angeleri Hügel ON SOME PRECOVERS AND PREENVELOPES , 2011 .

[13]  B. H. Maddox Absolutely pure modules , 1967 .

[14]  H. Zöschinger Schwach-Flache Moduln , 2013 .

[15]  Yılmaz Durǧun,et al.  Neat-flat Modules , 2013 .

[16]  B. Stenström Coherent Rings and Fp-Injective Modules , 1970 .

[17]  Yılmaz Durǧun,et al.  Absolutely s-Pure Modules and Neat-Flat Modules , 2015 .

[18]  S. Crivei,et al.  Relatively divisible and relatively flat objects in exact categories: applications , 2018, Applicable Algebra in Engineering, Communication and Computing.

[19]  Yueming Xiang MAX-INJECTIVE, MAX-FLAT MODULES AND MAX-COHERENT RINGS , 2010 .

[20]  B. Stenström Purity in functor categories , 1968 .

[21]  R. Colby Rings which have flat injective modules , 1975 .

[22]  B. Stenström Pure submodules , 1967 .

[23]  Yılmaz Durǧun,et al.  CONEAT SUBMODULES AND CONEAT-FLAT MODULES , 2014 .

[24]  C. Megibben Absolutely pure modules , 1970 .

[25]  Zhanmin Zhu C-COHERENT RINGS, C-SEMIHEREDITARY RINGS AND C-REGULAR RINGS , 2013 .

[26]  I. Herzog PURE-INJECTIVE ENVELOPES , 2003 .

[27]  W. Crawley-Boevey Locally finitely presented additive categories , 1994 .

[28]  Jinzhong Xu Flat covers of modules , 1996 .

[29]  Helmut Zöschinger,et al.  Schwach-injektive Moduln , 2006, Period. Math. Hung..

[30]  Theo Buehler,et al.  Exact Categories , 2008, 0811.1480.

[31]  László Fuchs,et al.  Neat submodules over integral domains , 2012, Period. Math. Hung..