On the transitivity of the comonotonic and countermonotonic comparison of random variables
暂无分享,去创建一个
[1] P. Fishburn. Binary choice probabilities: on the varieties of stochastic transitivity , 1973 .
[2] Bhaskar Dutta,et al. Comparison functions and choice correspondences , 1999 .
[3] Bernard Monjardet,et al. A Generalisation of Probabilistic Consistency: Linearity Conditions for Valued Preference Relations , 1988 .
[4] Radko Mesiar,et al. Triangular Norms , 2000, Trends in Logic.
[5] R. Nelsen. An Introduction to Copulas , 1998 .
[6] J. García-Lapresta,et al. Majority decisions based on difference of votes , 2001 .
[7] B. De Baets,et al. Transitivity frameworks for reciprocal relations: cycle-transitivity versus FG-transitivity , 2005, Fuzzy Sets Syst..
[8] B. De Baets,et al. Cycle-transitive comparison of independent random variables , 2005 .
[9] H. Nurmi. Comparing Voting Systems , 1987 .
[10] Marc Roubens,et al. Fuzzy Preference Modelling and Multicriteria Decision Support , 1994, Theory and Decision Library.
[11] M. Sklar. Fonctions de repartition a n dimensions et leurs marges , 1959 .
[12] P. Moran. On the method of paired comparisons. , 1947, Biometrika.
[13] P. Vincke,et al. Biorder families, valued relations and preference modelling , 1986 .
[14] R. Nelsen. An Introduction to Copulas (Springer Series in Statistics) , 2006 .
[15] Bernard De Baets,et al. Cyclic Evaluation of Transitivity of Reciprocal Relations , 2006, Soc. Choice Welf..
[16] B. De Baets,et al. On the Cycle-Transitivity of the Dice Model , 2003 .
[17] B. Baets,et al. Extreme Copulas and the Comparison of Ordered Lists , 2007 .
[18] Bonifacio Llamazares,et al. Aggregation of fuzzy preferences: Some rules of the mean , 2000, Soc. Choice Welf..