The Concepts of E Infinity: An elementary introduction to the Cantorian-fractal theory of quantum physics
暂无分享,去创建一个
[1] J. Neumann,et al. Continuous Geometry. , 1936, Proceedings of the National Academy of Sciences of the United States of America.
[2] Benoit B. Mandelbrot,et al. Fractal Geometry of Nature , 1984 .
[3] A. Hanson,et al. Asymptotically flat self-dual solutions to euclidean gravity , 1978 .
[4] J. Dauben. Georg Cantor: His Mathematics and Philosophy of the Infinite , 1979 .
[5] Joachim Reinhardt,et al. Quantum electrodynamics of strong fields , 1985 .
[6] Geo. E. Williams. The Solar Cycle in Precambrian Time , 1986 .
[7] M. Veltman. THE HIGGS BOSON , 1986 .
[8] Alain Connes,et al. Noncommutative geometry , 1988 .
[9] G. Hooft. A physical interpretation of gravitational instantons , 1989 .
[10] Martin Golubitsky,et al. Symmetry in chaos , 1992 .
[11] M. E. Naschie,et al. Penrose universe and Cantorian spacetime as a model for noncommutative quantum geometry , 1998 .
[12] M. Naschie. Superstrings, Knots, and Noncommutative Geometry in \(E^{{\text{(}}\infty {\text{)}}} \) Space , 1998 .
[13] A note on the differential forms of ε (∞) space , 2000 .
[14] M. Naschie. On the exact mass spectrum of quarks , 2002 .
[15] M. E. Naschie,et al. On a class of general theories for high energy particle physics , 2002 .
[16] L. Marek-Crnjac. On the mass spectrum of the elementary particles of the standard model using El Naschie’s golden field theory , 2003 .
[17] L. Marek-Crnjac. The mass spectrum of high energy elementary particles via El Naschie’s E(∞) golden mean nested oscillators, the Dunkerly–Southwell eigenvalue theorems and KAM , 2003 .
[18] M. El Naschie,. VAK, vacuum fluctuation and the mass spectrum of high energy particle physics , 2003 .
[19] G. Ord,et al. Entwined paths, difference equations, and the Dirac equation , 2002, quant-ph/0208004.
[20] M. E. Naschie,et al. Modular groups in Cantorian E(∞) high-energy physics , 2003 .
[21] M. E. Naschie,et al. The VAK of vacuum fluctuation,: Spontaneous self-organization and complexity theory interpretation of high energy particle physics and the mass spectrum , 2003 .
[22] M. E. Naschie,et al. New elementary particles as a possible product of a disintegrating symplictic vacuum , 2004 .
[23] M. E. Naschie,et al. A review of E infinity theory and the mass spectrum of high energy particle physics , 2004 .
[24] L. Marek-Crnjac. On the unification of all fundamental forces in a fundamentally fuzzy Cantorian ε(∞) manifold and high energy particle physics , 2004 .
[25] M. Naschie. Gravitational instanton in Hilbert space and the mass of high energy elementary particles , 2004 .
[26] M. Naschie. On the possibility of two new “elementary” particles with mass equal to m(k)=1.80339 MeV and m(ᾱgs)=26.180339 MeV , 2004 .
[27] M. E. Naschie,et al. TOPOLOGICAL DEFECTS IN THE SYMPLICTIC VACUUM, ANOMALOUS POSITRON PRODUCTION AND THE GRAVITATIONAL INSTANTON , 2004 .
[28] J. Czajko. On Cantorian spacetime over number systems with division by zero , 2004 .