The Concepts of E Infinity: An elementary introduction to the Cantorian-fractal theory of quantum physics

[1]  J. Neumann,et al.  Continuous Geometry. , 1936, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[3]  A. Hanson,et al.  Asymptotically flat self-dual solutions to euclidean gravity , 1978 .

[4]  J. Dauben Georg Cantor: His Mathematics and Philosophy of the Infinite , 1979 .

[5]  Joachim Reinhardt,et al.  Quantum electrodynamics of strong fields , 1985 .

[6]  Geo. E. Williams The Solar Cycle in Precambrian Time , 1986 .

[7]  M. Veltman THE HIGGS BOSON , 1986 .

[8]  Alain Connes,et al.  Noncommutative geometry , 1988 .

[9]  G. Hooft A physical interpretation of gravitational instantons , 1989 .

[10]  Martin Golubitsky,et al.  Symmetry in chaos , 1992 .

[11]  M. E. Naschie,et al.  Penrose universe and Cantorian spacetime as a model for noncommutative quantum geometry , 1998 .

[12]  M. Naschie Superstrings, Knots, and Noncommutative Geometry in \(E^{{\text{(}}\infty {\text{)}}} \) Space , 1998 .

[13]  A note on the differential forms of ε (∞) space , 2000 .

[14]  M. Naschie On the exact mass spectrum of quarks , 2002 .

[15]  M. E. Naschie,et al.  On a class of general theories for high energy particle physics , 2002 .

[16]  L. Marek-Crnjac On the mass spectrum of the elementary particles of the standard model using El Naschie’s golden field theory , 2003 .

[17]  L. Marek-Crnjac The mass spectrum of high energy elementary particles via El Naschie’s E(∞) golden mean nested oscillators, the Dunkerly–Southwell eigenvalue theorems and KAM , 2003 .

[18]  M. El Naschie, VAK, vacuum fluctuation and the mass spectrum of high energy particle physics , 2003 .

[19]  G. Ord,et al.  Entwined paths, difference equations, and the Dirac equation , 2002, quant-ph/0208004.

[20]  M. E. Naschie,et al.  Modular groups in Cantorian E(∞) high-energy physics , 2003 .

[21]  M. E. Naschie,et al.  The VAK of vacuum fluctuation,: Spontaneous self-organization and complexity theory interpretation of high energy particle physics and the mass spectrum , 2003 .

[22]  M. E. Naschie,et al.  New elementary particles as a possible product of a disintegrating symplictic vacuum , 2004 .

[23]  M. E. Naschie,et al.  A review of E infinity theory and the mass spectrum of high energy particle physics , 2004 .

[24]  L. Marek-Crnjac On the unification of all fundamental forces in a fundamentally fuzzy Cantorian ε(∞) manifold and high energy particle physics , 2004 .

[25]  M. Naschie Gravitational instanton in Hilbert space and the mass of high energy elementary particles , 2004 .

[26]  M. Naschie On the possibility of two new “elementary” particles with mass equal to m(k)=1.80339 MeV and m(ᾱgs)=26.180339 MeV , 2004 .

[27]  M. E. Naschie,et al.  TOPOLOGICAL DEFECTS IN THE SYMPLICTIC VACUUM, ANOMALOUS POSITRON PRODUCTION AND THE GRAVITATIONAL INSTANTON , 2004 .

[28]  J. Czajko On Cantorian spacetime over number systems with division by zero , 2004 .