Piperlongumine conquers temozolomide chemoradiotherapy resistance to achieve immune cure in refractory glioblastoma via boosting oxidative stress-inflamation-CD8+-T cell immunity

[1]  Junhong Han,et al.  STING cg16983159 methylation: a key factor for glioblastoma immunosuppression , 2022, Signal Transduction and Targeted Therapy.

[2]  R. Franich,et al.  Oxidative Damage to Mitochondria Enhanced by Ionising Radiation and Gold Nanoparticles in Cancer Cells , 2022, International journal of molecular sciences.

[3]  Weiqian Chen,et al.  Piperlongumine Synergistically Enhances the Antitumour Activity of Sorafenib by Mediating ROS-AMPK Activation and Targeting CPSF7 in Liver Cancer. , 2022, Pharmacological research.

[4]  Yixian Zhou,et al.  Application of glutathione depletion in cancer therapy: Enhanced ROS-based therapy, ferroptosis, and chemotherapy. , 2021, Biomaterials.

[5]  Aaron J. Johnson,et al.  Immunostimulatory bacterial antigen-armed oncolytic measles virotherapy significantly increases the potency of anti-PD1 checkpoint therapy. , 2021, The Journal of clinical investigation.

[6]  F. Hu,et al.  Rapid tumor recurrence in a novel murine GBM surgical model is associated with Akt/PD-L1/vimentin signaling. , 2021, Biochemical and Biophysical Research Communications - BBRC.

[7]  K. Ye,et al.  C/EBPβ/AEP Signaling Regulates the Oxidative Stress in Malignant Cancers, Stimulating the Metastasis , 2021, Molecular Cancer Therapeutics.

[8]  Lin Zhang,et al.  Synergistic immunotherapy of glioblastoma by dual targeting of IL-6 and CD40 , 2021, Nature Communications.

[9]  Shan Lu,et al.  FOXO3a protects glioma cells against temozolomide-induced DNA double strand breaks via promotion of BNIP3-mediated mitophagy , 2021, Acta Pharmacologica Sinica.

[10]  Y. Saeys,et al.  Single-cell profiling of myeloid cells in glioblastoma across species and disease stage reveals macrophage competition and specialization , 2021, Nature Neuroscience.

[11]  Y. Mao,et al.  Reprogramming the immunosuppressive microenvironment of IDH1 wild-type glioblastoma by blocking Wnt signaling between microglia and cancer cells , 2021, Oncoimmunology.

[12]  Yuanjun Li,et al.  Mannose synergizes with chemoradiotherapy to cure cancer via metabolically targeting HIF‐1 in a novel triple‐negative glioblastoma mouse model , 2020, Clinical and translational medicine.

[13]  H. Fu,et al.  Discovery of a dual inhibitor of NQO1 and GSTP1 for treating glioblastoma , 2020, Journal of Hematology & Oncology.

[14]  M. Weller,et al.  Immunocytokines are a promising immunotherapeutic approach against glioblastoma , 2020, Science Translational Medicine.

[15]  K. Shah,et al.  Immune phenotyping of diverse syngeneic murine brain tumors identifies immunologically distinct types , 2020, Nature Communications.

[16]  T. MacDonald,et al.  Subtype and grade-dependent spatial heterogeneity of T-cell infiltration in pediatric glioma , 2020, Journal for ImmunoTherapy of Cancer.

[17]  Qin Xu,et al.  Remodeling tumor immune microenvironment (TIME) for glioma therapy using multi-targeting liposomal codelivery , 2020, Journal for ImmunoTherapy of Cancer.

[18]  K. Tew,et al.  Oxidative Stress in Cancer. , 2020, Cancer cell.

[19]  A. Heimberger,et al.  Microglia promote glioblastoma via mTOR‐mediated immunosuppression of the tumour microenvironment , 2020, The EMBO journal.

[20]  M. Weller,et al.  Effect of Nivolumab vs Bevacizumab in Patients With Recurrent Glioblastoma , 2020, JAMA oncology.

[21]  Fen Wang,et al.  Gut microbial metabolite trimethylamine N-oxide aggravates GVHD by inducing M1 macrophage polarization in mice. , 2020, Blood.

[22]  B. Biswal,et al.  Piperlongumine, a potent anticancer phytotherapeutic: Perspectives on contemporary status and future possibilities as an anticancer agent. , 2020, Pharmacological research.

[23]  E. Chang,et al.  A tumor‐targeting nanomedicine carrying the p53 gene crosses the blood–brain barrier and enhances anti‐PD‐1 immunotherapy in mouse models of glioblastoma , 2019, International journal of cancer.

[24]  T. Gevaert,et al.  Piperlongumine increases sensitivity of colorectal cancer cells to radiation: Involvement of ROS production via dual inhibition of glutathione and thioredoxin systems. , 2019, Cancer letters.

[25]  Bin Wang,et al.  Exosomal miRNA-19b-3p of tubular epithelial cells promotes M1 macrophage activation in kidney injury , 2019, Cell Death & Differentiation.

[26]  She Chen,et al.  Activity-based protein profiling reveals GSTO1 as the covalent target of piperlongumine and a promising target for combination therapy for cancer. , 2019, Chemical communications.

[27]  Y. Assaraf,et al.  Modulating ROS to overcome multidrug resistance in cancer. , 2018, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[28]  G. Kochan,et al.  The intracellular signalosome of PD-L1 in cancer cells , 2018, Signal Transduction and Targeted Therapy.

[29]  Wenqiang Chen,et al.  PD-L1 confers glioblastoma multiforme malignancy via Ras binding and Ras/Erk/EMT activation. , 2018, Biochimica et biophysica acta. Molecular basis of disease.

[30]  J. Yakisich,et al.  Translational gap in ongoing clinical trials for glioma , 2018, Journal of Clinical Neuroscience.

[31]  Minoru Kanehisa,et al.  KEGG: new perspectives on genomes, pathways, diseases and drugs , 2016, Nucleic Acids Res..

[32]  G. Reifenberger,et al.  The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary , 2016, Acta Neuropathologica.

[33]  Etienne Becht,et al.  Immune and Stromal Classification of Colorectal Cancer Is Associated with Molecular Subtypes and Relevant for Precision Immunotherapy , 2016, Clinical Cancer Research.

[34]  Chen-feng Qi,et al.  Myeloid cell-derived inducible nitric oxide synthase suppresses M1 macrophage polarization , 2015, Nature Communications.

[35]  T. Maruyama,et al.  Role of neurochemical navigation with 5-aminolevulinic acid during intraoperative MRI-guided resection of intracranial malignant gliomas , 2015, Clinical Neurology and Neurosurgery.

[36]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[37]  Xiao Qiang Xie,et al.  Piperlongumine Inhibits Migration of Glioblastoma Cells via Activation of ROS-Dependent p38 and JNK Signaling Pathways , 2014, Oxidative medicine and cellular longevity.

[38]  B. Becher,et al.  Intratumoral IL-12 combined with CTLA-4 blockade elicits T cell–mediated glioma rejection , 2013, The Journal of experimental medicine.

[39]  M. Czech,et al.  Activation of the Nlrp3 inflammasome in infiltrating macrophages by endocannabinoids mediates beta cell loss in type 2 diabetes , 2013, Nature Medicine.

[40]  Guangchuang Yu,et al.  clusterProfiler: an R package for comparing biological themes among gene clusters. , 2012, Omics : a journal of integrative biology.

[41]  Volker Seifert,et al.  Intraoperative MRI guidance and extent of resection in glioma surgery: a randomised, controlled trial. , 2011, The Lancet. Oncology.

[42]  Colin N. Dewey,et al.  RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome , 2011, BMC Bioinformatics.

[43]  Ben S. Wittner,et al.  Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1 , 2009, Nature.

[44]  R. Mirimanoff,et al.  Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. , 2009, The Lancet. Oncology.

[45]  D. Bigner,et al.  Systemic CTLA-4 Blockade Ameliorates Glioma-Induced Changes to the CD4+ T Cell Compartment without Affecting Regulatory T-Cell Function , 2007, Clinical Cancer Research.

[46]  Martin J. van den Bent,et al.  Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. , 2005, The New England journal of medicine.

[47]  G. Reifenberger,et al.  Glioma , 2015, Nature Reviews Disease Primers.

[48]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[49]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..