High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure

Plasmonic high-harmonic generation (HHG) drew attention as a means of producing coherent extreme ultraviolet (EUV) radiation by taking advantage of field enhancement occurring in metallic nanostructures. Here a metal-sapphire nanostructure is devised to provide a solid tip as the HHG emitter, replacing commonly used gaseous atoms. The fabricated solid tip is made of monocrystalline sapphire surrounded by a gold thin-film layer, and intended to produce EUV harmonics by the inter- and intra-band oscillations of electrons driven by the incident laser. The metal-sapphire nanostructure enhances the incident laser field by means of surface plasmon polaritons, triggering HHG directly from moderate femtosecond pulses of ∼0.1 TW cm−2 intensities. The measured EUV spectra exhibit odd-order harmonics up to ∼60 nm wavelengths without the plasma atomic lines typically seen when using gaseous atoms as the HHG emitter. This experimental outcome confirms that the plasmonic HHG approach is a promising way to realize coherent EUV sources for nano-scale near-field applications in spectroscopy, microscopy, lithography and atto-second physics.

[1]  Gerard Mourou,et al.  Compression of amplified chirped optical pulses , 1985 .

[2]  Alfred Leitenstorfer,et al.  Nano-antenna-assisted harmonic generation , 2013 .

[3]  Lukas Novotny,et al.  Nanoscale spectroscopy with optical antennas , 2009 .

[4]  F. Légaré,et al.  Linking high harmonics from gases and solids , 2015, Nature.

[5]  Claudia Felser,et al.  Doped semiconductors as half-metallic materials: Experiments and first-principles calculations of CoTi1-xMxSb (M = Sc, V, Cr, Mn, Fe) , 2008 .

[6]  L. Minnhagen Spectrum and the energy levels of neutral argon, Ar I , 1973 .

[7]  Henry C. Kapteyn,et al.  GENERATION OF COHERENT SOFT X RAYS AT 2.7 NM USING HIGH HARMONICS , 1997 .

[8]  Zikri Altun,et al.  Generation of a broadband xuv continuum in high-order-harmonic generation by spatially inhomogeneous fields , 2012 .

[9]  R. Massudi,et al.  Design and Optimization of a 3D Pyramidal Nanowaveguide with a Square Cross-section for Plasmonic Field Enhancement for High Harmonic Generation , 2015, Plasmonics.

[10]  Pierre Agostini,et al.  Observation of high-order harmonic generation in a bulk crystal , 2011 .

[11]  In-Yong Park,et al.  High-harmonic generation by resonant plasmon field enhancement , 2008, Nature.

[12]  J. Olivier,et al.  Electronic structure of Al2O3 from electron energy loss spectroscopy , 1981 .

[13]  E. Goulielmakis,et al.  Extreme ultraviolet high-harmonic spectroscopy of solids , 2015, Nature.

[14]  B. L. Henke,et al.  X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92 , 1993 .

[15]  R. Huber,et al.  Real-time observation of interfering crystal electrons in high-harmonic generation , 2015, Nature.

[16]  Stephan W Koch,et al.  High harmonics generated in semiconductor nanostructures by the coupled dynamics of optical inter-and intraband excitations , 2008 .

[17]  Seunghwoi Han,et al.  Generation of EUV radiation by plasmonic field enhancement using nano‐structured bowties and funnel‐waveguides , 2013 .

[18]  U. Morgner,et al.  Nano‐antennae assisted emission of extreme ultraviolet radiation , 2014 .

[19]  C. Ropers,et al.  Nanostructure-enhanced atomic line emission , 2012, Nature.

[20]  Bo Tan,et al.  A femtosecond laser-induced periodical surface structure on crystalline silicon , 2006 .

[21]  M. Lewenstein,et al.  High-order harmonic generation from inhomogeneous fields , 2011, 1110.0665.

[22]  Young-Jin Kim,et al.  Plasmonic generation of ultrashort extreme-ultraviolet light pulses , 2011 .

[23]  A. Sakdinawat,et al.  Nanoscale X-ray imaging , 2009 .

[24]  R. Huber,et al.  Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations , 2014 .

[25]  Peatross,et al.  Intensity-dependent atomic-phase effects in high-order harmonic generation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[26]  Claus Ropers,et al.  Generation and bistability of a waveguide nanoplasma observed by enhanced extreme-ultraviolet fluorescence. , 2013, Physical review letters.

[27]  C. Waltermann,et al.  Bow-tie nano-antenna assisted generation of extreme ultraviolet radiation , 2013 .

[28]  Ivanov,et al.  Theory of high-harmonic generation by low-frequency laser fields. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[29]  A. Husakou,et al.  Theory of plasmon-enhanced high-order harmonic generation in the vicinity of metal nanostructures in noble gases , 2010, 1009.4124.

[30]  A. Verhoef,et al.  Laser technology: Source of coherent kiloelectronvolt X-rays , 2005, Nature.

[31]  Thomas Udem,et al.  A frequency comb in the extreme ultraviolet , 2005, Nature.

[32]  Claus Ropers,et al.  Extreme-ultraviolet light generation in plasmonic nanostructures , 2013, Nature Physics.

[33]  W. C. Martin,et al.  Handbook of Basic Atomic Spectroscopic Data , 2005 .

[34]  David J. Jones,et al.  Near-threshold harmonics from a femtosecond enhancement cavity-based EUV source: effects of multiple quantum pathways on spatial profile and yield. , 2011, Optics express.

[35]  J. Freericks,et al.  Theoretical description of high-order harmonic generation in solids , 2012, 1204.1803.

[36]  Martin Wegener Extreme Nonlinear Optics: An Introduction , 2004 .

[37]  M. Murnane,et al.  The attosecond nonlinear optics of bright coherent X-ray generation , 2010 .

[38]  L. Minnhagen Accurately Measured and Calculated Ground-Term Combinations of Ar ii* , 1971 .

[39]  Louis F. DiMauro,et al.  Generation and propagation of high-order harmonics in crystals , 2012 .

[40]  P. Corkum,et al.  Plasma perspective on strong field multiphoton ionization. , 1993, Physical review letters.

[41]  P. Corkum,et al.  Semiclassical analysis of high harmonic generation in bulk crystals , 2015 .

[42]  Seung-Woo Kim,et al.  Plasmonic field enhancement for generating ultrashort extreme-ultraviolet light pulses , 2011, NanoScience + Engineering.

[43]  Laura J. Heyderman,et al.  Arrays of nanoscale magnetic dots: Fabrication by x-ray interference lithography and characterization , 2004 .

[44]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .