Prototheca spp. induce an inflammatory response via mtROS-mediated activation of NF-κB and NLRP3 inflammasome pathways in bovine mammary epithelial cell cultures

[1]  J. Gibbins,et al.  Platelet-derived extracellular vesicles express NADPH oxidase-1 (Nox-1), generate superoxide and modulate platelet function , 2021, Free radical biology & medicine.

[2]  A. Nègre-Salvayre,et al.  Role of oxidative stress in the dysfunction of the placental endothelial nitric oxide synthase in preeclampsia , 2021, Redox biology.

[3]  G. Bussotti,et al.  The transcriptional response of pathogenic Leptospira to peroxide reveals new defenses against infection-related oxidative stress , 2020, PLoS pathogens.

[4]  Tao Yu,et al.  NLRP3 inflammasome in endothelial dysfunction , 2020, Cell Death & Disease.

[5]  Jinghui Yang,et al.  Morin Protects LPS-Induced Mastitis via Inhibiting NLRP3 Inflammasome and NF-κB Signaling Pathways , 2020, Inflammation.

[6]  Y. Kook,et al.  Mycobacterium abscessus infection leads to enhanced production of type 1 interferon and NLRP3 inflammasome activation in murine macrophages via mitochondrial oxidative stress , 2020, PLoS pathogens.

[7]  Zhenlian Wang,et al.  NLRP3 Inflammasome and Inflammatory Diseases , 2020, Oxidative medicine and cellular longevity.

[8]  H. Barkema,et al.  Murine and Human Cathelicidins Contribute Differently to Hallmarks of Mastitis Induced by Pathogenic Prototheca bovis Algae , 2020, Frontiers in Cellular and Infection Microbiology.

[9]  Jean C. Lee,et al.  Orchestration of human macrophage NLRP3 inflammasome activation by Staphylococcus aureus extracellular vesicles , 2020, Proceedings of the National Academy of Sciences.

[10]  Yu-hong Yuan,et al.  NEK7 interacts with NLRP3 to modulate the pyroptosis in inflammatory bowel disease via NF-κB signaling , 2019, Cell Death & Disease.

[11]  N. Tsang,et al.  Mitochondrial Oxidative Phosphorylation Complex Regulates NLRP3 Inflammasome Activation and Predicts Patient Survival in Nasopharyngeal Carcinoma* , 2019, Molecular & Cellular Proteomics.

[12]  R. Gromadka,et al.  The genus Prototheca (Trebouxiophyceae, Chlorophyta) revisited: Implications from molecular taxonomic studies , 2019, Algal Research.

[13]  A. Charbit,et al.  Pivotal Role of Mitochondria in Macrophage Response to Bacterial Pathogens , 2019, Front. Immunol..

[14]  X. Jia,et al.  Wedelolactone alleviates doxorubicin-induced inflammation and oxidative stress damage of podocytes by IκK/IκB/NF-κB pathway. , 2019, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[15]  H. Stenmark,et al.  Plasma membrane damage causes NLRP3 activation and pyroptosis during Mycobacterium tuberculosis infection , 2019, bioRxiv.

[16]  Z. Xia,et al.  Propofol directly induces caspase-1-dependent macrophage pyroptosis through the NLRP3-ASC inflammasome , 2019, Cell Death & Disease.

[17]  Yuan He,et al.  The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation , 2019, International journal of molecular sciences.

[18]  I. Adcock,et al.  Mitochondrial ROS and NLRP3 inflammasome in acute ozone-induced murine model of airway inflammation and bronchial hyperresponsiveness , 2019, Free radical research.

[19]  P. Cossart,et al.  Interaction between Intracellular Bacterial Pathogens and Host Cell Mitochondria , 2019, Microbiology spectrum.

[20]  H. Barkema,et al.  Prototheca zopfii genotype II induces mitochondrial apoptosis in models of bovine mastitis , 2019, Scientific Reports.

[21]  M. Krönke,et al.  Mitochondrial reactive oxygen species enable proinflammatory signaling through disulfide linkage of NEMO , 2019, Science Signaling.

[22]  Houhui Song,et al.  Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors , 2019, Cell Death & Disease.

[23]  T. Piech,et al.  A survey on the incidence of Prototheca mastitis in dairy herds in Lublin province, Poland. , 2019, Journal of dairy science.

[24]  Yong Zhang,et al.  LncRNA XIST mediates bovine mammary epithelial cell inflammatory response via NF‐κB/NLRP3 inflammasome pathway , 2018, Cell proliferation.

[25]  G. Ghosh,et al.  NF-κB, IκB, and IKK: Integral Components of Immune System Signaling. , 2019, Advances in experimental medicine and biology.

[26]  D. Ojcius,et al.  Src-family kinase-Cbl axis negatively regulates NLRP3 inflammasome activation , 2018, Cell Death & Disease.

[27]  K. Tenbrock,et al.  Reactive Oxygen Species as Regulators of MDSC-Mediated Immune Suppression , 2018, Front. Immunol..

[28]  Baojian Wu,et al.  REV-ERBα integrates colon clock with experimental colitis through regulation of NF-κB/NLRP3 axis , 2018, Nature Communications.

[29]  A. Karnkowska,et al.  cytb as a New Genetic Marker for Differentiation of Prototheca Species , 2018, Journal of Clinical Microbiology.

[30]  A. Hevener,et al.  New mitochondrial DNA synthesis enables NLRP3 inflammasome activation , 2018, Nature.

[31]  E. Latz,et al.  Targeting the NLRP3 inflammasome in inflammatory diseases , 2018, Nature Reviews Drug Discovery.

[32]  S. Grazioli,et al.  Mitochondrial Damage-Associated Molecular Patterns: From Inflammatory Signaling to Human Diseases , 2018, Front. Immunol..

[33]  M. Masuda,et al.  Molecular Characterization of Prototheca strains isolated in China revealed the first cases of protothecosis associated with Prototheca zopfii genotype 1 , 2018, Medical mycology.

[34]  Lin Sun,et al.  Reactive oxygen species promote tubular injury in diabetic nephropathy: The role of the mitochondrial ros-txnip-nlrp3 biological axis , 2018, Redox biology.

[35]  M. Previati,et al.  Mitochondria-associated membranes (MAMs) and inflammation , 2018, Cell Death & Disease.

[36]  Publisher's Note , 2018, Anaesthesia.

[37]  M. Karin,et al.  Limiting inflammation—the negative regulation of NF-κB and the NLRP3 inflammasome , 2017, Nature Immunology.

[38]  Shao-Cong Sun,et al.  The non-canonical NF-κB pathway in immunity and inflammation , 2017, Nature Reviews Immunology.

[39]  H. Barkema,et al.  Incidence of clinical mastitis and distribution of pathogens on large Chinese dairy farms. , 2017, Journal of dairy science.

[40]  K. Stamatakis,et al.  Mitochondrial ROS Production Protects the Intestine from Inflammation through Functional M2 Macrophage Polarization. , 2017, Cell reports.

[41]  Si Ming Man,et al.  Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases , 2017, Immunological reviews.

[42]  Z. Tian,et al.  HBV inhibits LPS-induced NLRP3 inflammasome activation and IL-1β production via suppressing the NF-κB pathway and ROS production. , 2017, Journal of hepatology.

[43]  S. Fanning,et al.  An Investigation of the Innate Immune Response in Bovine Mammary Epithelial Cells Challenged by Prototheca zopfii , 2016, Mycopathologia.

[44]  T. Silvetti,et al.  Molecular typing and differences in biofilm formation and antibiotic susceptibilities among Prototheca strains isolated in Italy and Brazil. , 2016, Journal of dairy science.

[45]  V. Dixit,et al.  Inflammasomes: mechanism of assembly, regulation and signalling , 2016, Nature Reviews Immunology.

[46]  P. Brož Inflammasomes: Intracellular detection of extracellular bacteria , 2016, Cell Research.

[47]  Mark Ellisman,et al.  NF-κB Restricts Inflammasome Activation via Elimination of Damaged Mitochondria , 2016, Cell.

[48]  Dandan Han,et al.  Characterization of Prototheca zopfii Genotypes Isolated from Cases of Bovine Mastitis and Cow Barns in China , 2015, Mycopathologia.

[49]  Yaohong Zhu,et al.  Lactobacillus rhamnosus GR-1 Ameliorates Escherichia coli-Induced Inflammation and Cell Damage via Attenuation of ASC-Independent NLRP3 Inflammasome Activation , 2015, Applied and Environmental Microbiology.

[50]  T. Soldati,et al.  Reactive oxygen species and mitochondria: A nexus of cellular homeostasis , 2015, Redox biology.

[51]  D. Kelton,et al.  Herd characteristics and cow-level factors associated with Prototheca mastitis on dairy farms in Ontario, Canada. , 2012, Journal of dairy science.

[52]  H. Kamata,et al.  Short communication: Molecular typing of Prototheca zopfii from bovine mastitis in Japan. , 2012, Journal of dairy science.

[53]  B. Han,et al.  Characterization of Prototheca zopfii Associated with Outbreak of Bovine Clinical Mastitis in Herd of Beijing, China , 2011, Mycopathologia.

[54]  L. Corbellini,et al.  Bovine Mastitis due to Prototheca zopfii: Clinical, Epidemiological and Pathological Aspects in a Brazilian Dairy Herd , 2001, Tropical Animal Health and Production.