A rich hydrocarbon chemistry and high C to O ratio in the inner disk around a very low-mass star

[1]  J. Fortney,et al.  Thermal emission from the Earth-sized exoplanet TRAPPIST-1 b using JWST , 2023, Nature.

[2]  J. Alves,et al.  The star formation history of Upper Scorpius and Ophiuchus. A 7D picture: positions, kinematics, and dynamical traceback ages , 2022, Astronomy & Astrophysics.

[3]  M. Meyer,et al.  The Kinematics and Excitation of Infrared Water Vapor Emission from Planet-forming Disks: Results from Spectrally Resolved Surveys and Guidelines for JWST Spectra , 2022, The Astronomical Journal.

[4]  P. J. Richards,et al.  Gaia Data Release 3. Summary of the content and survey properties , 2022, Astronomy & Astrophysics.

[5]  Kecheng Zhang,et al.  Molecules with ALMA at Planet-forming Scales (MAPS). VII. Substellar O/H and C/H and Superstellar C/O in Planet-feeding Gas , 2021, The Astrophysical Journal Supplement Series.

[6]  J. R. Martínez-Galarza,et al.  Wavelength calibration and resolving power of the JWST MIRI Medium Resolution Spectrometer , 2021, Astronomy & Astrophysics.

[7]  A. Chédin,et al.  The 2020 edition of the GEISA spectroscopic database , 2021, Journal of Molecular Spectroscopy.

[8]  E. Bergin,et al.  Earth’s carbon deficit caused by early loss through irreversible sublimation , 2021, Science Advances.

[9]  T. V. van Kempen,et al.  Water in star-forming regions: physics and chemistry from clouds to disks as probed by Herschel spectroscopy , 2021, Astronomy & Astrophysics.

[10]  E. Bergin,et al.  Observing Carbon and Oxygen Carriers in Protoplanetary Disks at Mid-infrared Wavelengths , 2021, The Astrophysical Journal.

[11]  L. Testi,et al.  Size and structures of disks around very low mass stars in the Taurus star-forming region , 2020, 2012.02225.

[12]  G. Herczeg,et al.  Hints for Icy Pebble Migration Feeding an Oxygen-rich Chemistry in the Inner Planet-forming Region of Disks , 2020, The Astrophysical Journal.

[13]  J. Berthelier,et al.  Aliphatic and aromatic hydrocarbons in comet 67P/Churyumov-Gerasimenko seen by ROSINA , 2019, Astronomy & Astrophysics.

[14]  K. Luhman,et al.  New Young Stars and Brown Dwarfs in the Upper Scorpius Association , 2018, The Astronomical journal.

[15]  F. Ménard,et al.  Modelling mid-infrared molecular emission lines from T Tauri stars , 2018, Astronomy & Astrophysics.

[16]  R. P. Butler,et al.  The CARMENES search for exoplanets around M dwarfs , 2018, Astronomy & Astrophysics.

[17]  E. Bergin,et al.  Destruction of Refractory Carbon in Protoplanetary Disks , 2017, 1707.08982.

[18]  C. Ormel,et al.  Formation of TRAPPIST-1 and other compact systems , 2017, 1703.06924.

[19]  M. Trieloff,et al.  Spatial distribution of carbon dust in the early solar nebula and the carbon content of planetesimals , 2016, 1707.07611.

[20]  G. Toon,et al.  N2- and (H2+He)-broadened cross sections of benzene (C6H6) in the 7–15 µm region for the Titan and jovian atmospheres , 2016 .

[21]  J. Carpenter,et al.  ALMA OBSERVATIONS OF CIRCUMSTELLAR DISKS IN THE UPPER SCORPIUS OB ASSOCIATION , 2016, 1605.05772.

[22]  Bruce Swinyard,et al.  The Mid-Infrared Instrument for JWST, II: Design and Build , 2015, 1508.02333.

[23]  Tokyo Institute of Technology,et al.  The molecular composition of the planet-forming regions of protoplanetary disks across the luminosity regime , 2015, 1507.08544.

[24]  Huib Visser,et al.  The Mid-Infrared Instrument for the James Webb Space Telescope, VI: The Medium Resolution Spectrometer , 2015, 1508.03070.

[25]  Bruce Swinyard,et al.  The Mid-Infrared Instrument for the James Webb Space Telescope, II: Design and Build , 2015 .

[26]  G. Mulders,et al.  THE SNOW LINE IN VISCOUS DISKS AROUND LOW-MASS STARS: IMPLICATIONS FOR WATER DELIVERY TO TERRESTRIAL PLANETS IN THE HABITABLE ZONE , 2015, 1505.03516.

[27]  D. Charbonneau,et al.  THE OCCURRENCE OF POTENTIALLY HABITABLE PLANETS ORBITING M DWARFS ESTIMATED FROM THE FULL KEPLER DATASET AND AN EMPIRICAL MEASUREMENT OF THE DETECTION SENSITIVITY , 2015, 1501.01623.

[28]  Sron,et al.  Ro-vibrational excitation of an organic molecule (HCN) in protoplanetary disks , 2014, 1412.1847.

[29]  J. Carpenter,et al.  AN ALMA CONTINUUM SURVEY OF CIRCUMSTELLAR DISKS IN THE UPPER SCORPIUS OB ASSOCIATION , 2014, 1404.0387.

[30]  G. Herczeg,et al.  THE ATOMIC AND MOLECULAR CONTENT OF DISKS AROUND VERY LOW-MASS STARS AND BROWN DWARFS , 2013, 1311.1228.

[31]  D. Horne,et al.  DETECTION OF CH4 IN THE GV TAU N PROTOPLANETARY DISK , 2013 .

[32]  S. Bruderer Survival of molecular gas in cavities of transition disks - I. CO , 2013, 1308.2966.

[33]  L. Testi,et al.  Explaining millimeter-sized particles in brown dwarf disks , 2013, 1304.6638.

[34]  G. Blake,et al.  THE HCN–WATER RATIO IN THE PLANET FORMATION REGION OF DISKS , 2013, 1303.2692.

[35]  Alessandro Morbidelli,et al.  Building Terrestrial Planets , 2012, 1208.4694.

[36]  J. Najita,et al.  FORMATION OF ORGANIC MOLECULES AND WATER IN WARM DISK ATMOSPHERES , 2011, 1109.6673.

[37]  J. Bernard-Salas,et al.  CASSIS: THE CORNELL ATLAS OF SPITZER/INFRARED SPECTROGRAPH SOURCES. II. HIGH-RESOLUTION OBSERVATIONS , 2011, 1108.3507.

[38]  J. S. Carr,et al.  A SPITZER SURVEY OF MID-INFRARED MOLECULAR EMISSION FROM PROTOPLANETARY DISKS. II. CORRELATIONS AND LOCAL THERMAL EQUILIBRIUM MODELS , 2011, 1104.0948.

[39]  John S. Carr,et al.  ORGANIC MOLECULES AND WATER IN THE INNER DISKS OF T TAURI STARS , 2011, 1104.0184.

[40]  A. Tielens,et al.  The ‘soot line’: Destruction of presolar polycyclic aromatic hydrocarbons in the terrestrial planet-forming region of disks , 2010 .

[41]  Geoffrey A. Blake,et al.  A SPITZER SURVEY OF MID-INFRARED MOLECULAR EMISSION FROM PROTOPLANETARY DISKS. I. DETECTION RATES , 2010, 1006.4189.

[42]  E. Bergin,et al.  THE SOLAR NEBULA ON FIRE: A SOLUTION TO THE CARBON DEFICIT IN THE INNER SOLAR SYSTEM , 2010, 1001.0818.

[43]  C. Dullemond,et al.  RADIATIVE TRANSFER MODELS OF MID-INFRARED H2O LINES IN THE PLANET-FORMING REGION OF CIRCUMSTELLAR DISKS , 2009, 0909.0975.

[44]  J. Carpenter,et al.  SPITZER SPECTROSCOPY OF CIRCUMSTELLAR DISKS IN THE 5 Myr OLD UPPER SCORPIUS OB ASSOCIATION , 2009, 0901.4120.

[45]  K. Willacy,et al.  CARBON ISOTOPE FRACTIONATION IN PROTOPLANETARY DISKS , 2008, 0812.0269.

[46]  D. Apai,et al.  THE DIFFERENT EVOLUTION OF GAS AND DUST IN DISKS AROUND SUN-LIKE AND COOL STARS , 2008, 0810.2552.

[47]  J. Najita,et al.  Organic Molecules and Water in the Planet Formation Region of Young Circumstellar Disks , 2008, Science.

[48]  G. Orton,et al.  The composition of Titan's stratosphere from Cassini/CIRS mid-infrared spectra , 2007 .

[49]  K. Willacy,et al.  Benzene Formation in the Inner Regions of Protostellar Disks , 2006, astro-ph/0612230.

[50]  J. Augereau,et al.  C2D Spitzer-IRS spectra of disks around T Tauri stars. II. PAH emission features , 2006, astro-ph/0609157.

[51]  Ithaca,et al.  A Survey and Analysis of Spitzer Infrared Spectrograph Spectra of T Tauri Stars in Taurus , 2006, astro-ph/0608038.

[52]  Laurence S. Rothman,et al.  Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database , 2006 .

[53]  J. Augereau,et al.  c2d Spitzer IRS Spectra of Disks around T Tauri Stars. I. Silicate Emission and Grain Growth , 2005, astro-ph/0511092.

[54]  Ana Heras,et al.  Infrared Space Observatory's Discovery of C4H2, C6H2, and Benzene in CRL 618 , 2001 .

[55]  E. Feigelson,et al.  A New Mechanism for the Formation of Meteoritic Kerogen-Like Material , 1991, Science.

[56]  J. Plíva,et al.  Intensities in the ?4, ?12, ?13, and ?14 bands of benzene , 1989 .

[57]  E. Feigelson,et al.  Formation of polycyclic aromatic hydrocarbons in circumstellar envelopes , 1989 .

[58]  Y. Avni,et al.  Energy spectra of X-ray clusters of galaxies , 1976 .

[59]  G. Wright,et al.  The Mid-Infrared Instrument for the James Webb Space Telescope, I: Introduction , 2015 .

[60]  E. R. Polovtseva,et al.  The HITRAN2012 molecular spectroscopic database , 2013 .

[61]  J. Bernard-Salas,et al.  CASSIS: THE CORNELL ATLAS OF SPITZER/INFRARED SPECTROGRAPH SOURCES , 2011 .