Accuracy limits and window corrections for photon Doppler velocimetry

Symmetric, plate-impact experiments were performed to validate photon Doppler velocimetry (PDV) with established shock wave diagnostics. Impact velocity measurements using shorting pins demonstrated that the velocity accuracy of PDV can be 0.1% or better. Shock velocities and refractive indices were also measured with PDV (at 1550 nm) and velocity interferometer system for any reflector (VISAR) (at 532 nm) to obtain window corrections for single crystal LiF (100), c-cut sapphire, and z-cut quartz. Time-dependent, free-surface velocity histories for shocked LiF(100) provide a direct comparison between PDV and VISAR diagnostics and illustrate the benefits and shortcomings of the new diagnostic. Further implications of these results are presented.

[1]  L. M. Barker,et al.  Laser interferometer for measuring high velocities of any reflecting surface , 1972 .

[2]  D. R. Goosman,et al.  Analysis of the laser velocity interferometer , 1975 .

[3]  J. Asay,et al.  Effect of Impurity Clustering on Elastic Precursor Decay in LiF , 1972 .

[4]  J. Wise,et al.  Laser interferometer measurements of refractive index in shock-compressed materials , 1986 .

[5]  L. M. Barker,et al.  Shock wave study of the α ⇄ ε phase transition in iron , 1974 .

[6]  G. E. Duvall,et al.  Phase transitions under shock-wave loading , 1977 .

[7]  Y. Gupta,et al.  Refractive indices of sapphire under elastic, uniaxial strain compression along the a axis , 2001 .

[8]  Irving H. Malitson,et al.  Refraction and Dispersion of Synthetic Sapphire , 1962 .

[9]  J. Futrell,et al.  Crossed-beam study of the reaction H3O+(D2O,H2O)D2HO+ , 1980 .

[10]  R. E. Setchell Refractive index of sapphire at 532 nm under shock compression and release , 2002 .

[11]  J. N. Johnson,et al.  Quasielastic release in shock‐compressed solids , 1992 .

[12]  Charles F. McMillan,et al.  Velocimetry of fast surfaces using Fabry–Perot interferometry , 1988 .

[13]  O. V. Fat’yanov,et al.  Optical transmission through inelastically deformed shocked sapphire: stress and crystal orientation effects , 2005 .

[14]  H. J. Mcskimin,et al.  Measurement of Third‐Order Moduli of Silicon and Germanium , 1964 .

[15]  W. Nellis,et al.  Shock compression of aluminum, copper, and tantalum , 1981 .

[16]  B. Pazol,et al.  Index of refraction measurement on sapphire at low temperatures and visible wavelengths. , 1993, Applied optics.

[17]  James E. Bailey,et al.  Principal Hugoniot, reverberating wave, and mechanical reshock measurements of liquid deuterium to 400 GPa using plate impact techniques , 2004 .

[18]  G. Ghosh,et al.  Sellmeier coefficients and dispersion of thermo-optic coefficients for some optical glasses. , 1997, Applied optics.

[19]  R. E. Setchell Index of refraction of shock-compressed fused silica and sapphire , 1979 .

[20]  L. M. Barker,et al.  Shock‐Wave Studies of PMMA, Fused Silica, and Sapphire , 1970 .

[21]  W. F. Hemsing,et al.  Velocity sensing interferometer (VISAR) modification. , 1979, The Review of scientific instruments.

[22]  Y. Gupta,et al.  Refractive index and elastic properties of z-cut quartz shocked to 60 kbar , 2000 .

[23]  Y. Gupta,et al.  Ordinary refractive index of sapphire in uniaxial tension and compression along the c axis , 2003 .