An anticipation model of potential customers' purchasing behavior based on clustering analysis and association rules analysis

[1]  R. J. Kuo,et al.  Integration of ART2 neural network and genetic K-means algorithm for analyzing Web browsing paths in electronic commerce , 2005, Decis. Support Syst..

[2]  Tzung-Pei Hong,et al.  Mining association rules with multiple minimum supports using maximum constraints , 2005, Int. J. Approx. Reason..

[3]  Pawan Lingras,et al.  Temporal analysis of clusters of supermarket customers: conventional versus interval set approach , 2005, Inf. Sci..

[4]  Yuh-Jiuan Tsay,et al.  CBAR: an efficient method for mining association rules , 2005, Knowl. Based Syst..

[5]  Xiaozhe Wang,et al.  Intelligent web traffic mining and analysis , 2005, J. Netw. Comput. Appl..

[6]  Supriya Kumar De,et al.  Clustering web transactions using rough approximation , 2004, Fuzzy Sets Syst..

[7]  Euiho Suh,et al.  A prediction model for the purchase probability of anonymous customers to support real time web marketing: a case study , 2004, Expert Syst. Appl..

[8]  So Young Sohn,et al.  Segmentation of stock trading customers according to potential value , 2004, Expert Syst. Appl..

[9]  Zuo-Peng Liang,et al.  Discovering user profiles for Web personalized recommendation , 2004, Journal of Computer Science and Technology.

[10]  Wenjuan Gong,et al.  Customer Behavior Pattern Discovering with Web Mining , 2004, APWeb.

[11]  Diane Canwell,et al.  Key Concepts in Business Practice , 2004 .

[12]  Sung-Shun Weng,et al.  Feature-based recommendations for one-to-one marketing , 2003, Expert Systems with Applications.

[13]  Kyong Joo Oh,et al.  The collaborative filtering recommendation based on SOM cluster-indexing CBR , 2003, Expert Syst. Appl..

[14]  Kate Smith-Miles,et al.  Web page clustering using a self-organizing map of user navigation patterns , 2003, Decis. Support Syst..

[15]  Yoon Ho Cho,et al.  A personalized recommender system based on web usage mining and decision tree induction , 2002, Expert Syst. Appl..

[16]  Chi-Hoon Lee,et al.  Web personalization expert with combining collaborative filtering and association rule mining technique , 2001, Expert Syst. Appl..

[17]  Muammer Ozer,et al.  User segmentation of online music services using fuzzy clustering , 2001 .

[18]  Syed Sibte Raza Abidi,et al.  A data mining strategy for inductive data clustering: a synergy between self-organising neural networks and K-means clustering techniques , 2000, 2000 TENCON Proceedings. Intelligent Systems and Technologies for the New Millennium (Cat. No.00CH37119).

[19]  Samuel Kaski,et al.  Self organization of a massive document collection , 2000, IEEE Trans. Neural Networks Learn. Syst..

[20]  Tzung-Pei Hong,et al.  Mining association rules from quantitative data , 1999, Intell. Data Anal..

[21]  Ling Cheng,et al.  New algorithms for efficient mining of association rules , 1999, Proceedings. Frontiers '99. Seventh Symposium on the Frontiers of Massively Parallel Computation.

[22]  Ramakrishnan Srikant,et al.  Mining quantitative association rules in large relational tables , 1996, SIGMOD '96.

[23]  Jiawei Han,et al.  Discovery of Multiple-Level Association Rules from Large Databases , 1995, VLDB.

[24]  Ramakrishnan Srikant,et al.  Fast Algorithms for Mining Association Rules in Large Databases , 1994, VLDB.

[25]  Teuvo Kohonen,et al.  Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.

[26]  Ai-BoSong,et al.  Discovering User Profiles for Web Personalized Recommendation , 2004 .

[27]  Jorma Laaksonen,et al.  SOM_PAK: The Self-Organizing Map Program Package , 1996 .

[28]  H. Hruschka Market definition and segmentation using fuzzy clustering methods , 1986 .

[29]  T. Kohonen Self-organized formation of topographically correct feature maps , 1982 .