Direct path integral estimators for isotope fractionation ratios.

Fractionation of isotopes among distinct molecules or phases is a quantum effect which is often exploited to obtain insights on reaction mechanisms, biochemical, geochemical, and atmospheric phenomena. Accurate evaluation of isotope ratios in atomistic simulations is challenging, because one needs to perform a thermodynamic integration with respect to the isotope mass, along with time-consuming path integral calculations. By re-formulating the problem as a particle exchange in the ring polymer partition function, we derive new estimators giving direct access to the differential partitioning of isotopes, which can simplify the calculations by avoiding thermodynamic integration. We demonstrate the efficiency of these estimators by applying them to investigate the isotope fractionation ratios in the gas-phase Zundel cation, and in a few simple hydrocarbons.

[1]  Peter J. Rossky,et al.  Surface Isotope Segregation as a Probe of Temperature in Water Nanoclusters. , 2014, The journal of physical chemistry letters.

[2]  W. Marsden I and J , 2012 .

[3]  H. Urey,et al.  The thermodynamic properties of isotopic substances. , 1947, Journal of the Chemical Society.

[4]  Joachim Sauer,et al.  Gas-phase infrared spectrum of the protonated water dimer: molecular dynamics simulation and accuracy of the potential energy surface. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[5]  John M. Eiler,et al.  “Clumped-isotope” geochemistry—The study of naturally-occurring, multiply-substituted isotopologues , 2007 .

[6]  M. Parrinello,et al.  Study of an F center in molten KCl , 1984 .

[7]  Thomas E. Markland,et al.  Unraveling quantum mechanical effects in water using isotopic fractionation , 2012, Proceedings of the National Academy of Sciences.

[8]  Michael W Deem,et al.  Parallel tempering: theory, applications, and new perspectives. , 2005, Physical chemistry chemical physics : PCCP.

[9]  Paul Hartogh,et al.  Ocean-like water in the Jupiter-family comet 103P/Hartley 2 , 2011, Nature.

[10]  D. A. Broido,et al.  Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene , 2010 .

[11]  Michael A Webb,et al.  Position-specific and clumped stable isotope studies: comparison of the Urey and path-integral approaches for carbon dioxide, nitrous oxide, methane, and propane. , 2014, The journal of physical chemistry. A.

[12]  Oliver Riordan,et al.  The inefficiency of re-weighted sampling and the curse of system size in high-order path integration , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[13]  W. Brand,et al.  Referencing strategies and techniques in stable isotope ratio analysis. , 2001, Rapid communications in mass spectrometry : RCM.

[14]  Michele Ceriotti,et al.  Efficient first-principles calculation of the quantum kinetic energy and momentum distribution of nuclei. , 2012, Physical review letters.

[15]  C. Clayton Carbon isotope fractionation during natural gas generation from kerogen , 1991 .

[16]  Ludger Wöste,et al.  Gas-Phase Infrared Spectrum of the Protonated Water Dimer , 2003, Science.

[17]  Alejandro Pérez,et al.  Improving the convergence of closed and open path integral molecular dynamics via higher order Trotter factorization schemes. , 2011, The Journal of chemical physics.

[18]  R. Williams,et al.  Journal of American Chemical Society , 1979 .

[19]  Claude Guillou,et al.  Natural factors of isotope fractionation and the characterization of wines , 1988 .

[20]  Jiri Vanicek,et al.  Monte Carlo evaluation of the equilibrium isotope effects using the Takahashi–Imada factorization of the Feynman path integral , 2013, 1310.1824.

[21]  A. Penzkofer,et al.  CHEMICAL PHYSICS LETTERS , 1976 .

[22]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[23]  Alexander D. MacKerell,et al.  CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields , 2009, J. Comput. Chem..

[24]  A. Schimmelmann,et al.  Fractionation of hydrogen isotopes in lipid biosynthesis , 1999 .

[25]  Michele Parrinello,et al.  Efficient stochastic thermostatting of path integral molecular dynamics. , 2010, The Journal of chemical physics.

[26]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[27]  M. Parrinello,et al.  The nature of the hydrated excess proton in water , 1999, Nature.

[28]  D. Marx,et al.  Theoretical messenger spectroscopy of microsolvated hydronium and Zundel cations. , 2010, Angewandte Chemie.

[29]  C. Reed,et al.  The structure of the hydrogen ion (H(aq)+) in water. , 2010, Journal of the American Chemical Society.

[30]  Kevin Bowman,et al.  Importance of rain evaporation and continental convection in the tropical water cycle , 2007, Nature.

[31]  D. Manolopoulos,et al.  A Surface-Specific Isotope Effect in Mixtures of Light and Heavy Water , 2013 .

[32]  J. W.,et al.  The Journal of Physical Chemistry , 1900, Nature.

[33]  Oriol Vendrell,et al.  Full dimensional (15-dimensional) quantum-dynamical simulation of the protonated water dimer. II. Infrared spectrum and vibrational dynamics. , 2007, The Journal of chemical physics.

[34]  G. Ciccotti,et al.  Infrared spectroscopy of small protonated water clusters at room temperature: an effective modes analysis. , 2011, The Journal of chemical physics.

[35]  Joel M Bowman,et al.  Ab initio potential energy and dipole moment surfaces for H5O2 +. , 2005, The Journal of chemical physics.

[36]  Jirí Vanícek,et al.  Efficient estimators for quantum instanton evaluation of the kinetic isotope effects: application to the intramolecular hydrogen transfer in pentadiene. , 2007, The Journal of chemical physics.

[37]  P. Taylor,et al.  An Accurate ab initio Quartic Force Field and Vibrational Frequencies for CH4 and Isotopomers , 1995 .

[38]  Oriol Vendrell,et al.  Full Dimensional (15D) Quantum-Dynamical Simulation of the Protonated Water-Dimer II: Infrared Spectrum and Vibrational Dynamics. , 2013 .

[39]  小谷 正雄 日本物理学会誌及びJournal of the Physical Society of Japanの月刊について , 1955 .

[40]  Peter G. Wolynes,et al.  Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids , 1981 .

[41]  T. D. Fridgen,et al.  Infrared Spectrum of the Protonated Water Dimer in the Gas Phase , 2004 .

[42]  Journal of Chemical Physics , 1932, Nature.

[43]  Takeshi Yamamoto,et al.  Path-integral virial estimator based on the scaling of fluctuation coordinates: application to quantum clusters with fourth-order propagators. , 2005, The Journal of chemical physics.

[44]  Mark A. Johnson,et al.  Unraveling anharmonic effects in the vibrational predissociation spectra of H5O2(+) and its deuterated analogues. , 2011, The journal of physical chemistry. A.

[45]  Michele Ceriotti,et al.  Efficient methods and practical guidelines for simulating isotope effects. , 2012, The Journal of chemical physics.

[46]  J. Schijf,et al.  Geochimica et Cosmochimica Acta , 2008 .

[47]  R. Meckenstock,et al.  Stable Hydrogen and Carbon Isotope Fractionation during Microbial Toluene Degradation: Mechanistic and Environmental Aspects , 2001, Applied and Environmental Microbiology.

[48]  J. Ehleringer,et al.  Carbon Isotope Discrimination and Photosynthesis , 1989 .

[49]  H. Craig THE GEOCHEMISTRY OF THE STABLE CARBON ISOTOPES , 1953 .

[50]  Joel M Bowman,et al.  The vibrational predissociation spectra of the H5O2 +RGn(RG = Ar,Ne) clusters: correlation of the solvent perturbations in the free OH and shared proton transitions of the Zundel ion. , 2005, The Journal of chemical physics.

[51]  J. Roscioli,et al.  Tuning the intermolecular proton bond in the H5O2+ ‘Zundel ion’ scaffold , 2011 .

[52]  Masatoshi Imada,et al.  Monte Carlo Calculation of Quantum Systems. II. Higher Order Correction , 1984 .

[53]  HighWire Press Applied and environmental microbiology : AEM. , 1976 .

[54]  Àngels González-Lafont,et al.  Direct dynamics calculation of the kinetic isotope effect for an organic hydrogen-transfer reaction, including corner-cutting tunneling in 21 dimensions , 1993 .

[55]  Ondrej Marsalek,et al.  Efficient Calculation of Free Energy Differences Associated with Isotopic Substitution Using Path-Integral Molecular Dynamics. , 2014, Journal of chemical theory and computation.

[56]  Lu Wang,et al.  Quantum fluctuations and isotope effects in ab initio descriptions of water. , 2014, The Journal of chemical physics.

[57]  Michele Ceriotti,et al.  i-PI: A Python interface for ab initio path integral molecular dynamics simulations , 2014, Comput. Phys. Commun..

[58]  J. Hayes,et al.  Compound-specific isotopic analyses: a novel tool for reconstruction of ancient biogeochemical processes. , 1990, Organic geochemistry.

[59]  R. Davies,et al.  Marine and Petroleum Geology , 2010 .

[60]  M. Parrinello,et al.  Experimental and computational study of isotopic effects within the Zundel ion , 2005 .

[61]  K. Jordan,et al.  Calculation of the vibrational spectra of H5O2(+) and its deuterium-substituted isotopologues by molecular dynamics simulations. , 2009, The journal of physical chemistry. A.

[62]  J. Krause,et al.  The dynamics of proton transfer in H5O2 , 1997 .

[63]  H. Balsiger,et al.  D/H and 18 O/ 16 O Ratio in the Hydronium Ion and in Neutral Water from in Situ Ion Measurements in Comet Halley , 1995 .

[64]  J. Vaníček,et al.  Path integral evaluation of equilibrium isotope effects. , 2009, The Journal of chemical physics.

[65]  S. Stuart,et al.  A reactive potential for hydrocarbons with intermolecular interactions , 2000 .

[66]  Joachim Sauer,et al.  The infrared spectrum of the O⋯H⋯O fragment of H5O2+: Ab initio classical molecular dynamics and quantum 4D model calculations , 2001 .

[67]  Roberto Senesi,et al.  Measurement of momentum distribution of lightatoms and molecules in condensed matter systems using inelastic neutron scattering , 2005 .

[68]  J. Hayes,et al.  Evidence from carbon isotope measurements for diverse origins of sedimentary hydrocarbons , 1990, Nature.

[69]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[70]  Ilgyou Shin,et al.  Eigen and Zundel forms of small protonated water clusters: structures and infrared spectra. , 2007, The journal of physical chemistry. A.

[71]  Matthias Scheffler,et al.  Ab initio molecular simulations with numeric atom-centered orbitals , 2009, Comput. Phys. Commun..

[72]  Mark A. Johnson,et al.  An H/D isotopic substitution study of the H5O2+.Ar vibrational predissociation spectra: exploring the putative role of Fermi resonances in the bridging proton fundamentals. , 2008, The journal of physical chemistry. B.

[73]  Berner,et al.  Isotope fractionation and atmospheric oxygen: implications for phanerozoic O(2) evolution , 2000, Science.

[74]  J. Price,et al.  Vibrational spectroscopy of the hydrated hydronium cluster ions H3O+·(H2O)n (n=1, 2, 3) , 1989 .

[75]  N. Price,et al.  Organic Geochemistry , 1970, Nature.

[76]  Genbank,et al.  APPLIED AND ENVIRONMENTAL MICROBIOLOGY , 2008, Applied and Environmental Microbiology.

[77]  Ali Hassanali,et al.  On the recombination of hydronium and hydroxide ions in water , 2011, Proceedings of the National Academy of Sciences.