A comparison of the correlation structure in GPR images of deltaic and barrier‐spit depositional environments

We have used geostatistical analysis of radar reflections to quantify the correlation structures found in 2-D ground‐penetrating radar (GPR) images. We find that the experimental semivariogram, the product of the geostatistical analysis of the GPR data, is well‐defined and can be modeled using standard geostatistical models to obtain an estimate of the range or correlation length, and the maximum correlation direction, in the 2-D GPR image. When we compare the results from geostatistical analysis of GPR data from selected deltaic and barrier‐spit depositional environments we find different correlation structures in GPR images from different depositional environments. GPR images from braid deltas have near‐horizontal correlation directions and correlation lengths on the order of a few meters. In contrast, the GPR image of a fan‐foreset delta has a very long (>24 m) correlation length and a maximum correlation direction plunging 20°. In the GPR images from barrier spits, we find maximum correlation directio...

[1]  Clayton V. Deutsch,et al.  GSLIB: Geostatistical Software Library and User's Guide , 1993 .

[2]  F. P. Agterberg,et al.  Autocorrelation Functions in Geology , 1970 .

[3]  Richardo A. Olea,et al.  Semivariogram modeling by weighted least squares , 1996 .

[4]  Harry M. Jol,et al.  GPR results used to infer depositional processes of coastal spits in large lakes , 1992 .

[5]  Charles S Bristow,et al.  Internal structure of aeolian dunes in Abu Dhabi determined using ground‐penetrating radar , 1996 .

[6]  H. Jol,et al.  Geometry and structure of deltas in large lakes: a ground penetrating radar overview , 1992 .

[7]  Harry M. Jol,et al.  Ground penetrating radar of northern lacustrine deltas , 1991 .

[8]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[9]  Harry M. Jol,et al.  Ground penetrating radar antennae frequencies and transmitter powers compared for penetration depth, resolution and reflection continuity1 , 1995 .

[10]  George A. McMechan,et al.  Use of ground-penetrating radar for 3-D sedimentological characterization of clastic reservoir analogs , 1997 .

[11]  Rosemary Knight,et al.  GEOSTATISTICAL ANALYSIS OF GROUND-PENETRATING RADAR DATA : A MEANS OF DESCRIBING SPATIAL VARIATION IN THE SUBSURFACE , 1998 .

[12]  Alan G. Green,et al.  Mapping the architecture of glaciofluvial sediments with three-dimensional georadar , 1995 .

[13]  Michael Edward Hohn,et al.  An Introduction to Applied Geostatistics: by Edward H. Isaaks and R. Mohan Srivastava, 1989, Oxford University Press, New York, 561 p., ISBN 0-19-505012-6, ISBN 0-19-505013-4 (paperback), $55.00 cloth, $35.00 paper (US) , 1991 .

[14]  Allan D. Woodbury,et al.  The geostatistical characteristics of the borden aquifer , 1991 .

[15]  H. Jol,et al.  Ground-penetrating radar investigation of a Lake Bonneville deita, Provo level, Brigham City, Utah , 1992 .

[16]  A. McBratney,et al.  Choosing functions for semi‐variograms of soil properties and fitting them to sampling estimates , 1986 .

[17]  H. Jol Ground penetrating radar antennae frequencies and transmitter powers compared for penetration depth, resolution and reflection continuity , 1995 .

[18]  R. A. Overmeeren,et al.  Radar facies of unconsolidated sediments in The Netherlands: A radar stratigraphy interpretation method for hydrogeology , 1998 .

[19]  B. Mooney,et al.  Ground Penetrating Radar Applications , 1994 .

[20]  F. P. Haeni,et al.  Application of Ground‐Penetrating‐Radar Methods in Hydrogeologie Studies , 1991 .

[21]  A. Miall,et al.  Anatomy of a bioclastic grainstone megashoal (Middle Silurian, southern Ontario) revealed by ground-penetrating radar , 1993 .