Doyen-Wilson theorem for perfect hexagon triple systems
暂无分享,去创建一个
[1] C. Colbourn,et al. The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.
[2] Jinhua Wang. Perfect dexagon triple systems with given subsystems , 2009, Discret. Math..
[3] Douglas R. Stinson,et al. On combinatorial designs with subdesigns , 1989, Discret. Math..
[4] Charles C. Lindner,et al. Perfect hexagon triple systems , 2004, Discret. Math..
[5] Richard M. Wilson,et al. Embeddings of Steiner triple systems , 1973, Discret. Math..
[6] Hao Shen,et al. Existence of $$(v, K_{1(3)}\cup\{{w}^*\})$$ -PBDs and its applications , 2008, Des. Codes Cryptogr..
[7] Gennian Ge,et al. Existence of (v, {5, wstar}, 1)-PBDs , 2004, Discret. Math..
[8] Douglas R. Stinson. A new proof of the Doyen-Wilson theorem , 1989 .
[9] L. Zhu,et al. Embeddings of Sλ(2, 4, v) , 1994 .
[10] Gennian Ge. Group Divisible Designs , 2006 .
[11] Charles J. Colbourn,et al. Equitable Embeddings of Steiner Triple Systems , 1996, J. Comb. Theory, Ser. A.
[12] Hao Shen,et al. On the existence of nearly Kirkman triple systems with subsystems , 2008, Des. Codes Cryptogr..
[13] Hao Shen,et al. Doyen–Wilson theorem for nested Steiner triple systems , 2004 .
[14] Dean G. Hoffman,et al. A New Class of Group Divisible Designs with Block Size Three , 1992, J. Comb. Theory, Ser. A.
[15] Hao Shen,et al. Embeddings of Resolvable Triple Systems , 2000, J. Comb. Theory, Ser. A.