Are the eigenvalues of the B-spline IgA approximation of −Δu = λu known in almost closed form?
暂无分享,去创建一个
Stefano Serra-Capizzano | Sven-Erik Ekström | Isabella Furci | S. Serra-Capizzano | Sven-Erik Ekström | Isabella Furci
[1] Giancarlo Sangalli,et al. Isogeometric Preconditioners Based on Fast Solvers for the Sylvester Equation , 2016, SIAM J. Sci. Comput..
[2] Stefano Serra Capizzano,et al. Preconditioning strategies for non‐Hermitian Toeplitz linear systems , 2005, Numer. Linear Algebra Appl..
[3] Stefano Serra-Capizzano,et al. The GLT class as a generalized Fourier analysis and applications , 2006 .
[4] Hendrik Speleers,et al. On the spectrum of stiffness matrices arising from isogeometric analysis , 2014, Numerische Mathematik.
[5] Hendrik Speleers,et al. Robust and optimal multi-iterative techniques for IgA Galerkin linear systems This is a preprint of a paper published in Comput. Methods Appl. Mech. Engrg. 284 (2015) 230264. , 2015 .
[6] J. Stoer,et al. Introduction to Numerical Analysis , 2002 .
[7] Carlo Garoni,et al. Generalized locally Toeplitz sequences : A spectral analysis tool for discretized differential equations , 2018 .
[8] Dario Bini,et al. SPECTRAL AND COMPUTATIONAL PROPERTIES OF BAND SYMMETRIC TOEPLITZ MATRICES , 1983 .
[9] S. Serra Capizzano,et al. Generalized locally Toeplitz sequences: spectral analysis and applications to discretized partial differential equations , 2003 .
[11] Luca F. Pavarino,et al. Isogeometric block FETI-DP preconditioners for the Stokes and mixed linear elasticity systems , 2016 .
[12] Enrico Bozzo,et al. On the Use of Certain Matrix Algebras Associated with Discrete Trigonometric Transforms in Matrix Displacement Decomposition , 1995, SIAM J. Matrix Anal. Appl..
[13] S. Serra-Capizzano,et al. A Note on Antireflective Boundary Conditions and Fast Deblurring Models , 2003, SIAM J. Sci. Comput..
[14] Stefano Serra Capizzano,et al. Preconditioning Strategies for Hermitian Indefinite Toeplitz Linear Systems , 2004, SIAM J. Sci. Comput..
[15] Stefano Serra Capizzano,et al. Are the eigenvalues of preconditioned banded symmetric Toeplitz matrices known in almost closed form? , 2017, Numerical Algorithms.
[16] Hendrik Speleers,et al. Spectral analysis and spectral symbol of matrices in isogeometric Galerkin methods , 2017, Math. Comput..
[17] Raymond H. Chan,et al. Fast Band-Toeplitz Preconditioners for Hermitian Toeplitz Systems , 1994, SIAM J. Sci. Comput..
[18] Carlo Garoni,et al. Generalized Locally Toeplitz Sequences: Theory and Applications: Volume I , 2017 .
[19] Stefano Serra Capizzano,et al. An ergodic theorem for classes of preconditioned matrices , 1998 .
[20] Albrecht Böttcher,et al. Eigenvalues of Hermitian Toeplitz matrices with smooth simple-loop symbols , 2015 .
[21] Carlo Garoni,et al. Generalized locally Toeplitz sequences : Theory and applications , 2017 .
[22] Bert Jüttler,et al. Multigrid Methods for Isogeometric Analysis with THB-Splines , 2016 .
[23] Sergei M. Grudsky,et al. Eigenvalues of Hermitian Toeplitz Matrices Generated by Simple-loop Symbols with Relaxed Smoothness , 2017 .
[24] Stefano Serra Capizzano,et al. Eigenvalues and eigenvectors of banded Toeplitz matrices and the related symbols , 2018, Numer. Linear Algebra Appl..
[25] Claude Brezinski,et al. Extrapolation methods - theory and practice , 1993, Studies in computational mathematics.
[26] A. Böttcher,et al. Introduction to Large Truncated Toeplitz Matrices , 1998 .
[27] Clemens Hofreither,et al. A robust multigrid method for Isogeometric Analysis in two dimensions using boundary correction , 2015, 1512.07091.
[28] Stefano Serra Capizzano,et al. Are the Eigenvalues of Banded Symmetric Toeplitz Matrices Known in Almost Closed Form? , 2018, Exp. Math..
[29] Albrecht Böttcher,et al. Inside the eigenvalues of certain Hermitian Toeplitz band matrices , 2010, J. Comput. Appl. Math..
[30] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[31] Stefano Serra,et al. Optimal, quasi-optimal and superlinear band-Toeplitz preconditioners for asymptotically ill-conditioned positive definite Toeplitz systems , 1997 .
[32] Raymond H. Chan,et al. Conjugate Gradient Methods for Toeplitz Systems , 1996, SIAM Rev..