Are the eigenvalues of the B-spline IgA approximation of −Δu = λu known in almost closed form?

Are the eigenvalues of the B-spline IgA approximation of −Δu = λu known in almost closed form?

[1]  Giancarlo Sangalli,et al.  Isogeometric Preconditioners Based on Fast Solvers for the Sylvester Equation , 2016, SIAM J. Sci. Comput..

[2]  Stefano Serra Capizzano,et al.  Preconditioning strategies for non‐Hermitian Toeplitz linear systems , 2005, Numer. Linear Algebra Appl..

[3]  Stefano Serra-Capizzano,et al.  The GLT class as a generalized Fourier analysis and applications , 2006 .

[4]  Hendrik Speleers,et al.  On the spectrum of stiffness matrices arising from isogeometric analysis , 2014, Numerische Mathematik.

[5]  Hendrik Speleers,et al.  Robust and optimal multi-iterative techniques for IgA Galerkin linear systems This is a preprint of a paper published in Comput. Methods Appl. Mech. Engrg. 284 (2015) 230264. , 2015 .

[6]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[7]  Carlo Garoni,et al.  Generalized locally Toeplitz sequences : A spectral analysis tool for discretized differential equations , 2018 .

[8]  Dario Bini,et al.  SPECTRAL AND COMPUTATIONAL PROPERTIES OF BAND SYMMETRIC TOEPLITZ MATRICES , 1983 .

[9]  S. Serra Capizzano,et al.  Generalized locally Toeplitz sequences: spectral analysis and applications to discretized partial differential equations , 2003 .

[11]  Luca F. Pavarino,et al.  Isogeometric block FETI-DP preconditioners for the Stokes and mixed linear elasticity systems , 2016 .

[12]  Enrico Bozzo,et al.  On the Use of Certain Matrix Algebras Associated with Discrete Trigonometric Transforms in Matrix Displacement Decomposition , 1995, SIAM J. Matrix Anal. Appl..

[13]  S. Serra-Capizzano,et al.  A Note on Antireflective Boundary Conditions and Fast Deblurring Models , 2003, SIAM J. Sci. Comput..

[14]  Stefano Serra Capizzano,et al.  Preconditioning Strategies for Hermitian Indefinite Toeplitz Linear Systems , 2004, SIAM J. Sci. Comput..

[15]  Stefano Serra Capizzano,et al.  Are the eigenvalues of preconditioned banded symmetric Toeplitz matrices known in almost closed form? , 2017, Numerical Algorithms.

[16]  Hendrik Speleers,et al.  Spectral analysis and spectral symbol of matrices in isogeometric Galerkin methods , 2017, Math. Comput..

[17]  Raymond H. Chan,et al.  Fast Band-Toeplitz Preconditioners for Hermitian Toeplitz Systems , 1994, SIAM J. Sci. Comput..

[18]  Carlo Garoni,et al.  Generalized Locally Toeplitz Sequences: Theory and Applications: Volume I , 2017 .

[19]  Stefano Serra Capizzano,et al.  An ergodic theorem for classes of preconditioned matrices , 1998 .

[20]  Albrecht Böttcher,et al.  Eigenvalues of Hermitian Toeplitz matrices with smooth simple-loop symbols , 2015 .

[21]  Carlo Garoni,et al.  Generalized locally Toeplitz sequences : Theory and applications , 2017 .

[22]  Bert Jüttler,et al.  Multigrid Methods for Isogeometric Analysis with THB-Splines , 2016 .

[23]  Sergei M. Grudsky,et al.  Eigenvalues of Hermitian Toeplitz Matrices Generated by Simple-loop Symbols with Relaxed Smoothness , 2017 .

[24]  Stefano Serra Capizzano,et al.  Eigenvalues and eigenvectors of banded Toeplitz matrices and the related symbols , 2018, Numer. Linear Algebra Appl..

[25]  Claude Brezinski,et al.  Extrapolation methods - theory and practice , 1993, Studies in computational mathematics.

[26]  A. Böttcher,et al.  Introduction to Large Truncated Toeplitz Matrices , 1998 .

[27]  Clemens Hofreither,et al.  A robust multigrid method for Isogeometric Analysis in two dimensions using boundary correction , 2015, 1512.07091.

[28]  Stefano Serra Capizzano,et al.  Are the Eigenvalues of Banded Symmetric Toeplitz Matrices Known in Almost Closed Form? , 2018, Exp. Math..

[29]  Albrecht Böttcher,et al.  Inside the eigenvalues of certain Hermitian Toeplitz band matrices , 2010, J. Comput. Appl. Math..

[30]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[31]  Stefano Serra,et al.  Optimal, quasi-optimal and superlinear band-Toeplitz preconditioners for asymptotically ill-conditioned positive definite Toeplitz systems , 1997 .

[32]  Raymond H. Chan,et al.  Conjugate Gradient Methods for Toeplitz Systems , 1996, SIAM Rev..