Topics in Multi dimensional Signal Demodulation
暂无分享,去创建一个
[1] Francesco Tricomi. Equazioni integrali contenenti il valor principale di un integrale doppio , 1928 .
[2] Marcel Riesz,et al. Sur les fonctions conjuguées , 1928 .
[3] A. Zygmund,et al. On the existence of certain singular integrals , 1952 .
[4] S. G. Mikhlin,et al. Multidimensional Singular Integrals and Integral Equations , 1965 .
[5] Ronald N. Bracewell,et al. The Fourier Transform and Its Applications , 1966 .
[6] A. Nuttall,et al. On the quadrature approximation to the Hilbert transform of modulated signals , 1966 .
[7] Serge Lowenthal,et al. OBSERVATION OF PHASE OBJECTS BY OPTICALLY PROCESSED HILBERT TRANSFORM , 1967 .
[8] E. Stein. Singular Integrals and Di?erentiability Properties of Functions , 1971 .
[9] Misac N. Nabighian,et al. The analytic signal of two-dimensional magnetic bodies with polygonal cross-section; its properties and use for automated anomaly interpretation , 1972 .
[10] M. Takeda,et al. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry , 1982 .
[11] Fraunhofer diffraction from a circular annular aperture with helical phase factor , 1985 .
[12] D. Burr,et al. Feature detection in human vision: a phase-dependent energy model , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.
[13] E. Peli. Contrast in complex images. , 1990, Journal of the Optical Society of America. A, Optics and image science.
[14] C. Sheppard,et al. Optimal Concentration of Electromagnetic Radiation , 1994 .
[15] Kieran G. Larkin,et al. The geometric phase: interferometric observations with white light , 1994 .
[16] Hans Knutsson,et al. Signal processing for computer vision , 1994 .
[17] W. Hackbusch. Singular Integral Equations , 1995 .
[18] K. Hibino,et al. Phase shifting for nonsinusoidal waveforms with phase-shift errors , 1995 .
[19] C. Sheppard,et al. Effect of numerical aperture on interference fringe spacing. , 1995, Applied optics.
[20] Carol J. Cogswell,et al. Three-dimensional Fourier analysis methods for digital processing and 3D visualization of confocal transmission images , 1995, Electronic Imaging.
[21] Kieran G. Larkin,et al. Efficient nonlinear algorithm for envelope detection in white light interferometry , 1996 .
[22] Kieran G. Larkin. Efficient demodulator for bandpass sampled AM signals , 1996 .
[23] Carol J. Cogswell,et al. Fluorescence microtomography: multiangle image acquisition and 3D digital reconstruction , 1996, Electronic Imaging.
[24] S. Hahn. Hilbert Transforms in Signal Processing , 1996 .
[25] Kieran G. Larkin,et al. Vectorial pupil functions and vectorial transfer functions , 1997 .
[26] A W Lohmann,et al. Optical implementation of the fractional Hilbert transform for two-dimensional objects. , 1997, Applied Optics.
[27] M. A. Oldfield,et al. Fast Fourier method for the accurate rotation of sampled images , 1997 .
[28] K. Hibino,et al. Phase-shifting algorithms for nonlinear and spatially nonuniform phase shifts , 1997 .
[29] Kieran G. Larkin,et al. Similarity theorems for fractional Fourier transforms and fractional Hankel transforms , 1998 .
[30] D. Malacara,et al. Interferogram Analysis for Optical Testing , 2018 .
[31] K. Hibino,et al. Phase-shifting algorithms for nonlinear and spatially nonuniform phase shifts: reply to comment , 1998 .
[32] Leon Cohen,et al. On an ambiguity in the definition of the amplitude and phase of a signal , 1999, Signal Process..
[33] Kieran G. Larkin,et al. Direct Method for Phase Retrieval from the Intensity of Cylindrical Wavefronts , 1999, Signal Recovery and Synthesis.
[34] C. Sheppard,et al. Focal shift, optical transfer function, and phase-space representations. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.
[35] M R Arnison,et al. Using the Hilbert transform for 3D visualization of differential interference contrast microscope images , 2000, Journal of microscopy.
[36] J Campos,et al. Image processing with the radial Hilbert transform: theory and experiments. , 2000, Optics letters.
[37] Kieran G. Larkin,et al. The three-dimensional transfer function and phase space mappings , 2001 .
[38] Kieran G. Larkin,et al. Wigner function and ambiguity function for nonparaxial wavefields , 2001, SPIE Defense + Commercial Sensing.
[39] M. A. Oldfield,et al. Natural demodulation of two-dimensional fringe patterns. I. General background of the spiral phase quadrature transform. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.
[40] K. Larkin. Natural demodulation of two-dimensional fringe patterns. II. Stationary phase analysis of the spiral phase quadrature transform. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.
[41] C. Sheppard,et al. Wigner function for highly convergent three-dimensional wave fields. , 2001, Optics letters.