Topological Characterization and Advanced Noise-Filtering Techniques for Phase Unwrapping of Interferometric Data Stacks

This chapter addresses the problem of phase unwrapping interferometric data stacks, ob‐ tained by multiple SAR acquisitions over the same area on the ground, with a twofold objective. First, a rigorous gradient-based formulation for the multichannel phase un‐ wrapping (MCh-PhU) problem is systematically established, thus capturing the intrinsic topological character of the problem. The presented mathematical formulation is consis‐ tent with the theoretical foundation of the discrete calculus. Then within the considered theoretical framework, we formally describe an innovative procedure for the noise filter‐ ing of time-redundant multichannel multilook interferograms. The strategy underlying the adopted multichannel noise filtering (MCh-NF) procedure arises from the key obser‐ vation that multilook interferograms are not fully time consistent due to multilook opera‐ tions independently applied on each single interferogram. Accordingly, the presented MCh-NF procedure suitably exploits the temporal mutual relationships of the interfero‐ grams. Finally, we present some experimental results on real data and show the effective‐ ness of our approach applied within the well-known small baseline subset (SBAS) processing chain, thus finally retrieving the relevant Earth’s surface deformation time ser‐ ies for geospatial phenomena analysis and understanding.

[1]  M. Costantini,et al.  A generalized phase unwrapping approach for sparse data , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[2]  Howard A. Zebker,et al.  Decorrelation in interferometric radar echoes , 1992, IEEE Trans. Geosci. Remote. Sens..

[3]  Christoph H. Gierull,et al.  Statistical analysis of multilook SAR interferograms for CFAR detection of ground moving targets , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Frank Harary,et al.  Graph Theory , 2016 .

[5]  Mike P. Stewart,et al.  A modification to the Goldstein radar interferogram filter , 2003, IEEE Trans. Geosci. Remote. Sens..

[6]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[7]  Stefania Usai,et al.  A least squares database approach for SAR interferometric data , 2003, IEEE Trans. Geosci. Remote. Sens..

[8]  Paul W. Fieguth,et al.  Hierarchical network flow phase unwrapping , 2002, IEEE Trans. Geosci. Remote. Sens..

[9]  Alessandro Parizzi,et al.  Adaptive InSAR Stack Multilooking Exploiting Amplitude Statistics: A Comparison Between Different Techniques and Practical Results , 2011, IEEE Geoscience and Remote Sensing Letters.

[10]  Gianfranco Fornaro,et al.  A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms , 2002, IEEE Trans. Geosci. Remote. Sens..

[11]  Fabio Rocca,et al.  Permanent scatterers in SAR interferometry , 2001, IEEE Trans. Geosci. Remote. Sens..

[12]  K. Feigl,et al.  Radar interferometry and its application to changes in the Earth's surface , 1998 .

[13]  Antonio Pepe,et al.  On the Extension of the Minimum Cost Flow Algorithm for Phase Unwrapping of Multitemporal Differential SAR Interferograms , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[14]  C. W. Chen,et al.  Network approaches to two-dimensional phase unwrapping: intractability and two new algorithms. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[15]  Zhe Hu,et al.  Phase Unwrapping for Very Large Interferometric Data Sets , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[17]  A. Bonato,et al.  Graphs and Hypergraphs , 2022 .

[18]  Leo Grady,et al.  Minimal Surfaces Extend Shortest Path Segmentation Methods to 3D , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Michele Manunta,et al.  SBAS-DInSAR time series generation on cloud computing platforms , 2013, 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS.

[20]  Antonio Pepe,et al.  Improved EMCF-SBAS Processing Chain Based on Advanced Techniques for the Noise-Filtering and Selection of Small Baseline Multi-Look DInSAR Interferograms , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Claudio Prati,et al.  A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[22]  Singiresu S. Rao Engineering Optimization : Theory and Practice , 2010 .

[23]  E. Rodríguez,et al.  Theory and design of interferometric synthetic aperture radars , 1992 .

[24]  Carlos López-Martínez,et al.  On the Extension of Multidimensional Speckle Noise Model From Single-Look to Multilook SAR Imagery , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Charles Elachi,et al.  Spaceborne Radar Remote Sensing: Applications and Techniques , 1987 .

[26]  Jong-Sen Lee,et al.  Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery , 1994, IEEE Trans. Geosci. Remote. Sens..

[27]  Dimitri P. Bertsekas,et al.  RELAX-IV : a faster version of the RELAX code for solving minimum cost flow problems , 1994 .

[28]  Gianfranco Fornaro,et al.  A Null-Space Method for the Phase Unwrapping of Multitemporal SAR Interferometric Stacks , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[29]  J. Woods,et al.  Probability and Random Processes with Applications to Signal Processing , 2001 .

[30]  Michele Manunta,et al.  Scalable performance analysis of the parallel SBAS-DInSAR algorithm , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.

[31]  Antonio Pepe,et al.  Multichannel Phase Unwrapping: Problem Topology and Dual-Level Parallel Computational Model , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[32]  Howard Zebker,et al.  Edgelist phase unwrapping algorithm for time series InSAR analysis. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[33]  Wei Xu,et al.  A region growing algorithm for InSAR phase unwrapping , 1996, IGARSS '96. 1996 International Geoscience and Remote Sensing Symposium.

[34]  Mario Costantini,et al.  A novel phase unwrapping method based on network programming , 1998, IEEE Trans. Geosci. Remote. Sens..

[35]  Qifeng Yu,et al.  Directionally Adaptive Filter for Synthetic Aperture Radar Interferometric Phase Images , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[36]  Michele Manunta,et al.  SBAS-DInSAR Parallel Processing for Deformation Time-Series Computation , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[37]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[38]  Antonio Pepe,et al.  High-performance parallel computation of the multichannel phase unwrapping problem , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[39]  Howard A. Zebker,et al.  Phase unwrapping for large SAR interferograms: statistical segmentation and generalized network models , 2002, IEEE Trans. Geosci. Remote. Sens..

[40]  Haifeng Huang,et al.  An Efficient and Adaptive Approach for Noise Filtering of SAR Interferometric Phase Images , 2011, IEEE Geoscience and Remote Sensing Letters.

[41]  Leo Grady,et al.  Discrete Calculus - Applied Analysis on Graphs for Computational Science , 2010 .

[42]  P. Rosen,et al.  SYNTHETIC APERTURE RADAR INTERFEROMETRY TO MEASURE EARTH'S SURFACE TOPOGRAPHY AND ITS DEFORMATION , 2000 .

[43]  Andrew Hooper,et al.  Phase unwrapping in three dimensions with application to InSAR time series. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[44]  Jordi J. Mallorquí,et al.  Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images , 2003, IEEE Trans. Geosci. Remote. Sens..